
1

EE 382 Introduction to Junior Design

Medusa The Fire-Fighting Robot

by

Ahmed Barradah
Lawrence Landon

Timothy Miller
Robert Rose

May 11, 1999

2

Table of Contents
Table of Contents.. 2
List of Figures and Tables: ... 3
References... 3
Abstract... 4
Chassis Design.. 5

Motor and Drive Hardware ... 5
Platform ... 5

Microcontroller and Software ... 6
Microcontroller ... 6
Software ... 7

PWM... 8
Closed Loop Control... 9
Left Wall Following.. 10

Subsystem Design... 10
Power Supply... 10

LM 317 ... 10
LM 7805 ... 10

Sensors ... 11
Wall sensors... 11
White Line Sensor... 12
Flame Sensor ... 13
H-bridges ... 14
PC Board Design and Layout .. 14

Budget... 15
Conclusion .. 15
Figures .. 17
Appendix... 29

3

List of Figures and Tables:
Figure 1: Bottom of First Layer…………………………………………………...18
Figure 2: Top of First Layer……………………………………………………… 18
Figure 3: Bottom of Second Layer……………………………………………….. 19
Figure 4: Top of Second Layer……………………………………………………19
Figure 5: The circuit design of the phototransistor………………………………. 20
Figure 6: The layout of the GP2D12 on the robot………………………………...20
Table 1: Measurements for the GP2D12…………………………………………. 21
Figure 7: Plot of Voltage vs. Distance for the GP2D12………………………….. 21
Figure 8: Plot of Voltage vs. Distance with gain of two for the GP2D12………...22
Figure 9: Block diagram of the power supply……………………………………. 22
Figure 10: Schematic for power supply…………………………………………...23
Figure 11: PWM Flowchart ………………………………………………………24
Figure 12: PWM Closed Loop Flowchart…………………………………….….. 25
Figure 13: Left Wall Following Flow Chart………………………………………26
Figure 14: Budget Breakdown…………………………………………………….27

References
LM7805, Voltage Regulator, National Semiconductor, http://www.national .com/design/index.html.

LM317, Voltage Regulator, National Semiconductor, http://www.national.com/design/index.html.

L298, Dual Full-Bridge Driver, ST Microelectronics, http://www.chipcards.de/

PIC16C77, Microcontroller, Arizona Microchip, http://www.microchip.com

ICL7642, Quad Op-amp, Harris Semiconductor, http://www.harris.com/harris/

GP2D12, IR Proximity Sensor, Sharp, http://www.sharp.com

4

Abstract

The Annual Trinity College Fire-Fighting Home Robot Contest has gained much

popularity recently. Many schools participate in the event, which makes for a very

challenging and competitive atmosphere. Although the national competition is not a

main focus for the EE 382 Junior Design course at NMT, it is viewed as an incentive for

the students to design and build a fire-fighting robot to the best of their ability.

Over the last few years, the fire-fighting robots at NMT have each had their own

unique designs and personalities, but they have all had the same brain (microcontroller),

the Motorola 68HC11. Our group decided to turn over a new leaf and try something

different. We chose use a new family of microntrollers, the MicroCHIP PIC16C77

series. We chose this particular microcontroller because they are very versatile, space

saving, and relatively inexpensive. We were drawn to the features of the PIC, mainly the

analog-to-digital converter and embedded pulse-width-modulation (PWM) capabilities.

Also, we were impressed with the size of the microcontroller itself. One 40-pin package

would be sufficient enough control all of the features of our robot.

Since we were the first group to use the PIC series of microcontrollers, we were

taking a risk. The following report contains all of the data that we have assessed

throughout the spring semester of 1999. Hopefully, we can pave the way for future

groups who may choose to use the PIC for the fire-fighting robot design.

5

Chassis Design

Motor and Drive Hardware

For the design of our robot we decided to use the differential drive configuration

with a single caster. This design is called a three point because of the number of point

touching the ground at any given time. The benefits of using the differential drive are the

ease of implementation, the in-place turning ability, and this is the way the base was

delivered to our group. The motors that we used on the robot were manufactured by

Pittman and are 24 vdc gearhead motors with optical encoders. The final drive ratio for

the motors is 5.9:1, which produces enough torque for only 7 vdc needed to drive the

motors. The motors were mounted to the bottom of the lower plate so that the wheels

were parallel. The need for the wheels to travel in a parallel direction makes the robot

initially travel in a straight line. If the wheels were not parallel then the robot would tend

to travel in an arc and make the motor control compensate for the design error. Initially

our group was going to use two caster assemblies, but after assembling the robot the

simplicity of the one castor assembly was selected. In place of the front castor is where

the white line detection sensor is placed. If the robot was to tip forward the plastic guard

for the white line sensor would allow the robot to rebound back to the castor, because the

guard is beyond the balance point of the fulcrum.

Platform

The amount of physical space that our design needed was minimal, so our robot

only needed two layers to mount all of the hardware. On the bottom of the first layer is

where the two motors and the single caster assembly are mounted (Fig. 1). Also on the

bottom of the first layer is where the white line sensor is mounted. The top of the first

6

layer is where the proximity sensors are located. In order to establish a clear viewing

angle for the proximity sensors, nothing can be placed in front of the sensors. Behind the

proximity sensors is where the battery is located (Fig. 2). For our robot only one battery

is needed, but the battery that we are using is too large to go under the first layer. On the

bottom of the second layer is where the motor control and voltage regulation boards are

located (Fig. 3). To reduce the effects of electrical noise on the microcontroller and

sensor board, the two main sources (other than the motors) where separated from the

control area. Also under the second layer is where the fan that is used to extinguish the

fire is located. The top of the second layer is where all of the components that need to be

adjusted are located (Fig. 4). The PIC16C77 is located on top to facilitate

reprogramming and insertion upon programming changes. The sensor board is also

located on the top of the second layer so that the gains for each sensor can be adjusted if

needed. Each layer of the robot is 1/8” aluminum plate with 6” long 8-32 all-tread

spacer. Four spacer are used to separate the two layers and add rigidity to the design.

Microcontroller and Software

Microcontroller

 The microcontroller is responsible for all of the decisions that our robot must

make to navigate through the maze. The microcontroller must control the motors from the

input it receives from the proximity sensors. If the robot gets close to one wall the

microcontroller should slow down the motor on the other side to correct it self. Another

responsibility of the microcontroller is to monitor the flame detection sensor to look for

the candle. If the candle is found the microcontroller must control the motors to approach

the fire, also monitoring the proximity sensors so that the robot maintains a safe distance

7

from the wall. Once the robot has stopped within 12 inches of the flame, the

microcontroller must turn on the flame suppression fan. Finally, after the flame is

extinguished the microcontroller must return the robot to home.

Given all of the required information that the microcontroller must monitor, we

selected a microcontroller with several different beneficial systems. The first feature that

we wanted in our microcontroller was at least 2 channels of pulse width modulation

(PWM). PWM is used to control the motors by changing the duty cycle. The Motorola

68HC12 and the MicroCHIP PIC16C77 both have 2 channels of embedded PWM

control. Other features that we required for our microcontroller are 8 lines of A/D for

poling the sensors. The PIC16C77 has 8 lines of A/D and two pulse accumulators. The

reason that the pulse accumulators is an important feature is it can be used to monitor the

optical encoder form the motor and eliminate 2 line needed for A/D conversion. The

PIC16C77 meets all of the requirements that our group identified and its size is the

biggest benefit. Compared to the 68HC1X the PIC16C77 is only a 40-pin DIP chip

compared to the evaluation board of the Motorola’s.

Software

Programming the PIC16C77 was quite challenging causing our progress to be

slower than expected. First, we thought we were going to have access to a C-compiler

that would have made the programming task much easier. As it turns out, the C-compiler

that was available to us was for different series of PIC microcontrollers. Consequently,

we programmed the PIC16C77 using Microchip’s assembler. Second, we thought the

PIC16C77 was a flash programmable part that would of allowed use to change program

much more quickly. However, the PIC16C77 microcontroller is an EPROM type device

8

that requires 30 to 40 minutes of erase time before reprogramming. And third, debugging

and interacting with the PIC16C77 microcontroller requires special features to be added

to the software that is being written. In other words, if constants need to be changed, then

the software has to be written to allow the operator to enter these constants. There are

many creative was of doing this, some of which we employed; but, they add to the

complexity of the program and detract from the time that can be devoted to solving the

problems at hand. On the other hand, the instruction set for the PIC16C77, which is quite

easy to learn, combined with it RISC base design make it a very viable selection in terms

of programming.

Enough said about the challenges we faced in programming the PIC16C77, let us

elaborate on the programming that was accomplished. Three main sets of code were

developed. The first program developed was simply to generate a varying pulse width

modulation (PWM) signal for each motor. The second set of code focused on closed loop

motor control. It was broken into two programs: one, that used a proportional controller

for speed control and the second that used proportional plus integral control. This set of

code allowed the operator to change the speed setting and the proportionality constant.

The third set of code added left wall following using the left wall sensor.

PWM

The PWM code was the first set of code written for the robot. You can find the

source listing in Appendix B. Its main purpose was to demonstrate that the motors could

be driven with a PWM signal and to find the correct frequency at which to drive the

motors. Figure 11 shows a simple flowchart of this program. The first thing the code

does is initialize constants, setup ports, initialize analog to digital (AD) converter, and

9

setup the PWM function. Then the software enters the main loop. Input voltages are

read using the AD to gain the amount of time that the PWM signal is to remain high. The

PWM uses an 8-bit integer to determine its on time by comparing a counter with a value

stored in a register. This value is update using the voltage read from the AD which is

also and 8-bit integer. Thus the PWM duty cycle is directly proportional the input

voltage on each channel. There are two separate PWM module in the PIC16C77 so this

process is repeated for each channel. Once the PWM duty cycle has been updated, the

software wait until the present PWM cycle is complete. Then it repeats the process

described above starting with reinitializing the ports and special function modules. It is a

good idea to reinitializing the functions at some interval within the software to increase

the reliability of the system.

Closed Loop Control

The PWM code was modified to add closed loop control. Two versions of this

code were written and can be found in Appendix B. The first accomplishes closed loop

control using a proportional control technique; and, the second utilized proportional and

integral control. Because the software does not check for overflow errors, both routines

perform erratically at the end points of desired speed. Figure 12 shows a basic flow chart

of both programs. It is very similar to the PWM code discussed above. It uses the two

remaining counters to get the actual speed from the encoders of the motors. In addition,

the respective controllers implemented. The ability to adjust the proportionality constant

has been added by reading of port B.

10

Left Wall Following

Here again the left wall following program grew out of the proceeding to

programs. It was decided, after some minimal experimentation due to time constraints, to

only implement the proportional type control in the wall following program. The wall

following code is listed in Appendix B and the flowchart is shown in Figure 13. This

code progresses similarly to the two discussed above with the addition of reading the AD

to obtain distance information. The value read from the left wall sensor is used to change

the speed of each motor. We did not have time to try this code out and it still needs to be

debugged using the Microchip simulator before programming a part.

Subsystem Design
Power Supply

We decided to use a 12V battery with two voltage regulators to activate the motor

and the rest of the components in the robot. The voltage regulators we used were LM 317

and LM 7805 as shown in the block diagram of figure 9.

LM 317

 The LM 317 is a 3-termianl regulator that can regulate a voltage between .25V

to 25V by using an adjustable pot to produce the desired output. Since we needed the

motor speed to be adjustable between 3V to 11V, we chose the LM317 to regulate the

12V Battery and produce a regulated voltage between 3V to 11V using a 10K pot.

LM 7805

The LM 7805 is a 3-terminal voltage regulator that can regulate a voltage between

7V to 35V and produce a fixed 5V. Most of the components we had in our robot were

11

running under 5V except the motor; therefore, we chose the 7805 regulator to regulate the

12V battery and outputs a 5V to these components as shown in figure 10.

Sensors

Sensors give the robot valuable information about the environment that it is

navigating through. The robot needs this information to decide which direction to go to

put out the candle flame. For our project we used three types of sensors: wall sensors,

white line sensors, and a flame-detecting sensor.

Wall sensors

The purpose of using wall sensors is to make the robot move in a straight line

without colliding with any wall. The robot measures the distance between its chassis and

the wall and adjusts its position accordingly.

However, since there were several types of wall sensors that we can use, we

needed to choose one that had an efficient range for distance measuring and good

accuracy. At the beginning of the semester we decided to design a phototransistor with a

555 timer as an emitter and use the GP1U52X as a receiver. The phototransistor was

assembled with 2 IR LED and a 555 timer that works with a frequency of 40 kHz and

under 50% duty cycle as shown in figure 5. The circuit is supposed, to send an infrared

signal to detect any walls around the robot and, is received by the GP1U52X (photodiode

receiver). Then, the circuit will transform the signal to the microprocessor to be analyzed.

Later on the semester we found out that the GP2D12 is more efficient in size and

has better accuracy in measurements than the one we were designing.

The GP2D12 is a distance-measuring sensor, which has an IR emitter and a

sensitive detector in a single package. It has a very accurate method of measuring the

12

distance to an object by using the triangulation method. Additionally, it is insensitive to

the color and texture of the object it is pointing at and has a range of 3.9in-43.3in, which

is sufficient need for the maze. Therefore, we decided to use the GP2D12 as a wall sensor

instead of the previous design we had.

In order to give the robot complete coverage of it’s surroundings we used three

GP2D12 sensors with a 45° angle between each other as shown in figure 6.

Moreover, we took some measurements out of the GP2D12 and plotted them

against distance to see how much distance the sensor can detect as shown in table 1,

figure 7, and figure 8.

As we can see from the plots, the GP2D12 has high sensitivity, which can detect

any object up to the range of 1.1M or 43.3In with good linearity.

White Line Sensor

The schematic of the white line sensor is shown in Appendix A. It utilizes a light

feedback technique to eliminate the need for a manually variable IR source. The circuit

automatically adjusts IR emission so that the photodetector always receives the same

amount of IR light. When the sensor passes over a white line, more light is reflected back

to the photodetector causing the circuit to compensate by reducing the drive current to the

IR LED. IR emission is directly proportional to the current flowing through the IR LED.

Consequently, a measure of how much light is need to keep the light constant at the

photodetector is available at the base and emitter of Q5. Since the emitter has the lower

output impedance, it is the desired output of the light feedback circuit. The voltages at

the emitter ranges from about 1.8 volts when a white line is present to 2.3 volts when it is

not hence the signal needs to be amplified. Op-Amp U5D performs two functions. It

13

amplifies this small signal and removes the DC offset that the signal is riding on. This

same amplifier is used by each of the GP2D12 distance sensors.

Flame Sensor

The Flame Sensor Schematic is shown in Appendix A. The flame sensor utilizes

a Large Area Photo Detector (LAPD) to detect the flame from a candle. The LAPD is

approximately 0.5” square and is sensitive to light. To keep the sensor from detecting

ambient light, an optical filter made out of cut up floppy disk media was used. The

LAPD is a current device so a current to voltage converter was used to condition its

signal. A variable gain amplifier was used to amplify the output of the current to voltage

converter thus providing greater functionality. Three gains are used to achieve three

different ranges. The ranges are approximately 6 to 3.5 feet, 3.5 to 1.75 feet and 1.75 to

0.5 feet.

Motor Control

In order to establish proper motor control for the robot, the use of an h-bridge

circuit is required. The h-bridge circuit consists of a set of four transistors in an IC

package that are arranged in an “H” orientation. This layout allows for current to flow

bi-directionally through the circuit thus allowing for directional control for our motors.

Additionally, logic input signals can be used to determine which direction the motors are

spinning. Depending on the paired combination of logic 1’s and 0’s the motor shaft can

turn left, turn right, and brake. Speed control is another feature of the h-bridges, when

given a pulse-width-modulated (PWM) input signal, depending on the length of the duty

cycle; the speed can be varied accordingly.

14

H-bridges

For our robot we chose to use the L298N series dual full-bridge driver

manufactured by STMicroelectronics . We chose this particular h-bridge simply because

they were relatively inexpensive (they cost us about $3.00 a piece from Allied), we could

control both motors with just one chip thus saving space on the chassis, and they were

very robust and not prone to damage from static discharge.

 The design for our h-bridge board came directly from the L298 data sheet. It

turns out that there is a schematic for bi-directional DC motor control for only one motor,

but since the circuit just needed to be mirrored to allow for both motors, the design was

easily implemented. The h-bridge circuit did require some minor modifications; the data

sheet called for an external bridge of four fast-recovery Shottky diodes to be placed on

each of the outputs. The purpose of the diodes is to prevent large spikes of current from

entering back into the h-bridge when the motors abruptly stop. The layout for the

printed-circuit board was done using the MicroSim evaluation software package

provided by the department. Our original plan was to place both the h-bridges and the

frequency-to-voltage converters on the same board, but since we decided to utilize the

pulse accumulator of the PIC instead, we did not connect the frequency to voltage

converters to the rest of the circuit.

PC Board Design and Layout

Some objectives for the project were to be efficient and to complete the task with

as few components as possible. Originally, we wanted to put all of the electrical

components on a single printed-circuit board. Since the PIC16C77 does not require much

space, we felt that this was definitely a possibility. However, we ran into some software

15

issues when the actual design for the board was being implemented. Since we decided to

use MicroSim for the design layout, we were subject to the limitations of the evaluation

software. Our biggest problem was simply the fact that we were not able to place all of

the components on one board. The evaluation version of MicroSim only allows a

certain number of nets to be placed simultaneously in one file, including all of the

components on one layout required too many nets and therefore we were forced to build

separate boards. Also, use of the autorouter function could not be taken advantage of in

the evaluation version either. Unfortunately, bus lines had to be traced and connected by

hand, which turned out to be a little tedious at times. Regardless of the software

complications, all the boards were successfully designed and etched.

Budget

The budget constraint set for the project was $100. Fortunately, one of our group

members was employed by Sandia National Laboratories, which loaned us parts for our

robot. We also received free samples of the PIC16C77 directly from Microchip . The

majority of our budget was spent on an extra 7.2V battery, the proximity sensors, and

various connectors, sockets, and hardware for the chassis. The grand total spent by our

group was about $90.82, which could have been much more considering a large portion

of parts were donated. Figure 14 is a pie chart representing our allocated budget.

Conclusion

This project presented a problem that required a well thought out solution. Our

group decided that a different solution might be better than the common 68HC11/Altera

solution. At the beginning of the semester we were going to use the PIC16C77 for motor

control and use the 68HC11 for the primary control unit. Upon researching the

16

PIC16CXX family of microcontrollers, we decided that we would use one PIC

microcontroller instead of the 68HC11 with a PIC motor control. The PIC16C77 offered

embedded PWM motor control and 8K of onboard memory. The 8 lines of A/D on the

PIC were enough for our design specifications. The amount of embedded controls and

I/O lines from the PIC16C77 simplified our wiring and overall design. The major

problem with the PIC16CXX family of microcontrollers is the C compiler is produced by

another company and test results of that compiler is that it does not work. The lack of a

working compiler forced us to use Assembly programming language. Assembly is very

efficient code but is also difficult for beginners to produce working code. One member

of our team is very proficient, so he did all of the programming. In the future, if any

group was to use a PIC microcontroller, we suggest that they use a PIC17CXXX family

processor because MicroCHIP has a working C compiler for these microcontrollers. The

overall status of our robot is that it is not working, but most of the subsystems are

working. The PIC has close loop control the motors, can read each of the proximity

sensors, and can detect the flame and turn on the fan. All of these subsystems need to be

incorporated in the code. Once all of the subsystems have been incorporated in the code

then we can calibrate each sensor for exact distances. Our group would like the

opportunity to finish our robot because we believe that our design is better and more

efficient.

17

Figures

18

Figure 1: Bottom of First Layer

Figure 2: Top of First Layer

Caster
Assembly

White Line
Sensor

Left Motor

Right Motor

BatteryProximity
Sensors

19

Figure 3: Bottom of Second Layer

Figure 4: Top of Second Layer

Motor Control
Board

Power Supply
Board

Fire
Extinguishing
Fan

Fire
Detection
Sensor

PIC
Microcontroller
Board

Sensor Board

20

Figure. 5: The circuit design of the phototransistor.

Figure. 6: The layout of the GP2D12 on the robot

21

Output
Voltage(v)

Range(m) Output Voltage(v) with
gain of 2v/v

1.342 0.2 2.684
1.088 0.25 2.176
0.928 0.3 1.856

0.78 0.35 1.56
0.704 0.4 1.408
0.628 0.45 1.256
0.546 0.5 1.092
0.488 0.55 0.976
0.451 0.6 0.902
0.431 0.65 0.862
0.393 0.7 0.786
0.354 0.75 0.708
0.335 0.8 0.67
0.316 0.85 0.632

0.31 0.9 0.62
0.293 0.95 0.586
0.288 1 0.576
0.274 1.05 0.548
0.273 1.1 0.546

Table 1: Measurements for the GP2D12

Fig. 3: Plot of Voltage vs. Distance for the GP2D12

Voltage vs. Distance for the GP2D12

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Distance (M)

Vo
lta

ge
(V

)

Figure 7: Plot of Voltage vs. Distance for the GP2D12

22

Voltage vs. Distance for the GP2D12 with gain of 2

0

0.5

1

1.5

2

2.5

3

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

Distance (M)

Vo
lta

ge
 (V

)

12V
Battery Switch

LM317 Motor

LM
7805 Sensor

Figure 9: Block Diagram of the power supply.

Figure 8: Plot of Voltage vs. Distance with gain of two for the
GP2D12.

23

Figure 10: A complete Schematic of the power supply.

24

Figure 11 PWM Flowchart

START

Initialize
Constants

Initialize
Modules

Get PWM
%DC

Update PWM
%DC

PWM
Cycle
Finshed?

NoYes

25

Figure 12 PWM Closed Loop Flowchart

START

Initialize
Constants

Initialize
Modules

Get PWM
%DC

Update PWM
%DC

Time to
update
speed?

Yes

No

Get Actual
Speed

Calculate
New Speed

26

Figure 13 Left Wall Following Flowchart

START

Initialize
Constants

Initialize
Modules

Get PWM
%DC

Update PWM
%DC

Time to
update
speed?

Yes

No

Get Actual
Speed

Calculate
New Speed

Time to
update
distance?

Yes

No

Get Actual
Distance

Calculate
New

27

Figure 14: Budget Breakdown

$11.78

$22.00

$30.00

$27.04

$9.18

3 GP2D12's

Chassis Components

Electrical Components

Misc. (wire connectors,
sockets, etc.)
Money Left Over

28

29

Appendix

Appendix

A
Schematics

30

Group 4 Robot Design

EE382 Junior Design

Ahmed Barradah
Law rence Landon
Timothy Miller
Robert Rose

A

1 5Tuesday , May 11, 1999

Title

Size Document Number Rev

Date: Sheet of

Board 1

Flame Sensor

Fire 1 A0

Fire 1 A1

Flame Out

Vref

Board 2

Motor Control

Motor 1 C

Motor 1 D

Motor 2 D

Motor 2 C

Motor 2 EN

Motor 1 EN

12 V

Board 1
Whit Line Sensor

Vref

White Line Out

Brd 1

Wall Sensors

Lef t Wall

Right Wall

Front Wall

VCC

VCC

VCC

12V

12V
VCC

VCC

VCC

VCC
VSS

VSS

VSS

Vref

VCC

Vref

VCC

Vref VCC

Encoder 1

Encoder 2

Mode
Select

Flame Out

White Line Out

Flame Out

Thresh 1

Thresh 2

Thresh 1
Thresh 2

White Line Out

Fire Det

Mode 0
Mode 1
Mode 2

White Line Det

Fire Det

White Line Det

Mode 0

Mode 1

Mode 2

U1

PIC16C77-LO

/MCLR1

AN02

AN13

AN24

AN35

T0CKI6

AN47

AN58

AN69

AN710

VDD11

VSS12

OSC113

OSC214

T1CKI15

CCP216

CCP117

SCK/SCL18

RD019

RD120 RD2 21RD3 22SDI/SDA 23SDO 24TX/CK 25RX/DT 26RD4 27RD5 28RD6 29RD7 30VSS 31VDD 32RB0/INT 33RB1 34RB2 35RB3 36RB4 37RB5 38RB6 39RB7 40

Q2
2N2222

3

2

1

Q3
2N2222

3

2

1

R5
1.5K

R3
1.5K

R4

1.5K

R6

1.5K

U2
LM317T
VIN3

AD
J

1

VOUT 2

U3
LM7805
VIN1

G
N

D
3

VOUT 2

R13
5K

R14

10K

BT1

12Volts

C6
0.01uF

+ C5
100uF

R7

1K

R11

1K

Y1

CRYSTAL

C2
22pF

C3
22pF

R12
100K

R8
100K

C4
1uF

R2
100

R1

10K

+ C1
15uF

D1

1N4148

S1

Reset

Q1
IRFF511

D2

1N4148

A
-

+ M1
MOTOR SERVO

S2

Start
S3

Stop

R9
100K

R10
100K

D3

LED

D4

LED

31

{Doc} {RevCode}

Flame Sensor

A

2 5Tuesday , May 11, 1999

Title

Size Document Number Rev

Date: Sheet of

VCC

VCC

VCC

Fire 1 A1

Fire 1 A0

Fire 1 A1

Fire 1 A0

+

-

U5C

ICL764210

9
8

4
11

R36

33K

+

-

U5B

ICL7642

5

6
7

4
11

D8

1
2

R35

1M

C9
0.01

R32

220K

R31

56K

R37

330K

R39

82K

R33

01K

U6B

4066

11
10

12

U6A
4066

1
2

13

U6D4066 89

6

R34

100K

R38

220K

U6C
4066 43

5
Flame Out

Vref

Fire 1 A1

Fire 1 A0

32

{Doc} {RevCode}

White Line Sensor

A

3 5Tuesday , May 11, 1999

Title

Size Document Number Rev

Date: Sheet of

VCC

VCC

VCC
VCC

+

-

U7A

ICL7642

3

2
1

4
11

+

-

U7B

ICL7642

5

6
7

4
11

Q5
2N2222

3

2

1

R41
10K

1
2

R42
R100K

1
2

R44

10K

1 2 R45
30

1
2

D9
IR

1
2

D10

1
2

+

-

U5D

ICL7642

12

13
14

4
11

R46

100K

1 2

R47
100K

1
3

2

R40
220K

1
2

R43

27K

1 2

C10
0.01uF

1
2

Vref

White Line Out

33

{Doc} {RevCode}

Wall Sensors

A

4 5Tuesday , May 11, 1999

Title

Size Document Number Rev

Date: Sheet of

VCC
VCC

VCC

VCC
VCC

VCC

Vcc

GND

Vo

GP2D12

Vcc

GND

Vo

GP2D12

Vcc

GND

Vo

GP2D12

+

-

U7C

ICL7642

10

9
8

4
11

R52

100K

1 2

R54
100K

1
3

2

R48
220K

1
2

R50

27K

1 2

+

-

U7D

ICL7642

12

13
14

4
11

R53

100K

1 2

R55
100K

1
3

2

R49
220K

1
2

R51

27K

1 2

+

-

U8A

ICL7642

3

2
1

4
11

R58

100K

1 2

R59
100K

1
3

2

R56
220K

1
2

R57

27K

1 2

Lef t Wall
Right Wall

Front Wall

34

{Doc} {RevCode}

Motor Control

A

5 5Tuesday , May 11, 1999

Title

Size Document Number Rev

Date: Sheet of

12V

12V 12V

U9

L298

1A15

1A27

2A110

2A212

1EN6

2EN11

1Y1 2

1Y2 3

2Y1 13

2Y2 14

1E 1

2E 15

A -+

M2

MOTOR SERVO

A -+

M3

MOTOR SERVO

D?

DIODE

D?

DIODE

D?

DIODE

D?

DIODE

D?

DIODE

D?

DIODE

D?

DIODE

D?

DIODE

Motor 1 C
Motor 1 D

Motor 2 D
Motor 2 C

Motor 2 EN
Motor 1 EN

12 V

35

This page intentionally left blank

36

Appendix

B
Source Code

37

PWM
Source Code

38

;**
; This file is a basic code template for assembly code generation *
; on the PICmicro PIC16C77. This file contains the basic code *
; building blocks to build upon. *
; *
; If interrupts are not used all code presented between the ORG *
; 0x004 directive and the label main can be removed. In addition *
; the variable assignments for 'w_temp' and 'status_temp' can *
; be removed. *
; *
; Refer to the MPASM User's Guide for additional information on *
; features of the assembler (Document DS33014). *
; *
; Refer to the respective PICmicro data sheet for additional *
; information on the instruction set. *
; *
; Template file assembled with MPLAB V3.99.18 and MPASM V2.15.06. *
; *
;**
; *
; Filename: motor.asm *
; Date: 3-24-99 *
; File Version: V1.0 *
; *
; Author: Tim Miller *
; Company: NMT *
; *
; *
;**
; *
; Files required: p16c77.inc *
; *
; *
; *
;**
; *
; Notes: This is the first attempt at writing code for the 16C77 *
; 03-27-99 Adder PWM *
; *
; *
; *
;**

list p=16c77 ; list directive to define processor
#include <p16c77.inc> ; processor specific variable definitions

__CONFIG _CP_OFF & _WDT_ON & _BODEN_ON & _PWRTE_ON & _RC_OSC

; '__CONFIG' directive is used to embed configuration data within .asm file.
; The lables following the directive are located in the respective .inc file.
; See respective data sheet for additional information on configuration word.

;***** A to D DEFINITIONS
; These defintions are used to selsect the A to D channel

39

; They are set to use the internal RC clock for conversion time
; They are also set to have the A to D turned on when the channel is
; is selected. So, use the following lines to set the channel and
; turn the A to D on using the internal RC conversion clock.
; movlw CHx ; Where CHx is CH1, CH2 ...
; movwf ADCON0 ;

CH0 EQU B'11000001' ; Channel 0
CH1 EQU B'11001001' ; Channel 1
CH2 EQU B'11010001' ; Channel 2
CH3 EQU B'11011001' ; Channel 3
CH4 EQU B'11100001' ; Channel 4
CH5 EQU B'11101001' ; Channel 5
CH6 EQU B'11110001' ; Channel 6
CH7 EQU B'11111001' ; Channel 7

;***** VARIABLE DEFINITIONS
w_temp EQU 0x70 ; variable used for context saving
status_temp EQU 0x71 ; variable used for context saving

TEMP EQU 20h ; temp variable

;**
ORG 0x000 ; processor reset vector
clrf PCLATH ; ensure page bits are claared
goto main ; go to beginning of program

;**************** Interrupt Service Routine ***************************

ORG 0x004 ; interrupt vector location
movwf w_temp ; save off current W register contents
movf STATUS,w ; move status register into W register
movwf status_temp ; save off contents of STATUS register

; isr code can go here or be located as a call subroutine elsewhere

movf status_temp,w ; retrieve copy of STATUS register
movwf STATUS ; restore pre-isr STATUS register contents
swapf w_temp,f
swapf w_temp,w ; restore pre-isr W register contents
retfie ; return from interrupt

;**************** Main Program **

main
call InitializePORTS
call InitializeAD
call InitializePWM

40

update
bcf PIR1,TMR2IF ;clear period flag
movlw CH0 ;setup for Ch 0
movwf ADCON0 ;sets up A to D
call GetAD ;starts A to D
movf ADRES,W ;get a/d value
movwf CCPR1L ;set dutycycle
movlw CH1 ;setup for Ch 0
movwf ADCON0 ;sets up A to D
call GetAD ;starts A to D
movf ADRES,W ;get a/d value
movwf CCPR2L ;set dutycycle

wait
btfss PIR1,TMR2IF ;are we done with this cycle?
goto wait ;no we aren't
goto update ;yes we are, do it again sam!

;**************** Subroutines ***

; GetAD starts the A to D and loops until the acquisition is finished.
; The channel should be selected before calling and the A to D should
; be ON.

GetAD
bcf PIR1,ADIF ;clear int flag
bsf ADCON0,GO ;start new conversion

loop
btfss PIR1,ADIF ;a/d done?
goto loop ;no then keep checking
return

;InitializePORT, initializes and sets up the ports.
; Set I/O on ports

InitializePORTS
bsf STATUS,RP0 ;Bank 1
movlw B'111111' ;Port A 1 = input, 0 = output
movwf TRISA ;set port A I/O
movlw B'11111111' ;Port B 1 = input, 0 = output
movwf TRISB ;set port B I/O
movlw B'11111001' ;Port C 1 = input, 0 = output
movwf TRISC ;set port C I/O
movlw B'11111111' ;Port D 1 = input, 0 = output
movwf TRISD ;set port D I/O
movlw B'111' ;Port E 1 = input, 0 = output
movwf TRISE ;set port E I/O
bcf STATUS,RP0 ;Bank 0
return

;InitializeAD, initializes and sets up the A/D hardware.
;Select ch0 to ch7 as analog inputs.

InitializeAD
bsf STATUS,RP0 ;bank 1
movlw B'00000000' ;select ch0-ch7...
movwf ADCON1 ;as analog inputs
bcf STATUS,RP0 ;bank 0

41

movlw B'11000001' ;select:RC,ch0..
movwf ADCON0 ;turn on A/D.
clrf ADRES ;clr result reg.
return

;InitializePWM, initializes and sets up the PWM hardware.

InitializePWM
movlw B'00000101' ;timer2 ON and 4:1 Prescale
movwf T2CON ;setup timer2
bsf STATUS,RP0 ;bank 1
movlw H'FF' ;value for 2.44Khz w/4:1 presacle
movwf PR2 ;
bcf STATUS,RP0 ;bank 0
movlw B'00111100' ;set the least sig bits to 11
iorwf CCP1CON,F ;on PWM 1 and set to PWM mode
iorwf CCP2CON,F ;on PWM 2 and set to PWM mode
return

;This routine is a software delay of 10uS for the a/d setup.
;At 4Mhz clock, the loop takes 3uS, so initialize TEMp with
;a value of 3 to give 9uS, plus the move etc should result in
;a total time of > 10uS.

SetupDelay
movlw .3
movwf TEMP

SD
decfsz TEMP
goto SD
return

END ; directive 'end of program'

42

PWM Closed Loop
Proportional Control

Source Code

43

;***
;
; FILENAME:MOTOR1.ASM
;
; FILE VERSION:V1.0
;
;FILES REQUIRED:p16c77.inc
;
; DESCRIPTION:This program is setup to control the motors of the robot.
;
; PURPOSE:Motor control of Robot.
;
;
; NOTE:Used to develope PWM motor control and closed loop speed
; control.
;
;
; CHANGE HISTORY
; Date Author Description
; -------- --------- --
; 03/24/99 T.Miller Intial generation
; 03/27/99 T.Miller Added PWM Code
; 04/06/99 T.Miller Added code to close the loop useing encoders & timers
; 05/05/99 T.Miller Added new constants and uses portB for Kp
;
;***

;===
; Instruct Assembler to assemble for a PIC16C77 configured as shown.
;===

list p=16c77 ; list directive to define processor
#include <p16c77.inc> ; processor specific variable definitions

__CONFIG _CP_OFF & _WDT_OFF & _BODEN_ON & _PWRTE_ON & _XT_OSC

; '__CONFIG' directive is used to embed configuration data within .asm file.
; The lables following the directive are located in the respective .inc file.
; See respective data sheet for additional information on configuration word.

;===
; Initialize constants
;===

;***** A to D DEFINITIONS
; These defintions are used to selsect the A to D channel
; They are set to use the internal RC clock for conversion time
; They are also set to have the A to D turned on when the channel is
; is selected. So, use the following lines to set the channel and
; turn the A to D on using the internal RC conversion clock.
; movlw CHx ; Where CHx is CH1, CH2 ...
; movwf ADCON0 ;

CH0 EQU B'11000001' ; Channel 0
CH1 EQU B'11001001' ; Channel 1
CH2 EQU B'11010001' ; Channel 2

44

CH3 EQU B'11011001' ; Channel 3
CH4 EQU B'11100001' ; Channel 4
CH5 EQU B'11101001' ; Channel 5
CH6 EQU B'11110001' ; Channel 6
CH7 EQU B'11111001' ; Channel 7

;***** CONSTANT DEFINITIONS
;SPD EQU D'36' ; desired speed -> Wd
;KSPD EQU D'156' ; desired speed * constant -> K*Wd
CYCLE EQU D'20' ; cytle time for feedback

;***** VARIABLE DEFINITIONS
w_temp EQU 0x70 ; variable used for context saving
status_temp EQU 0x71 ; variable used for context saving

TEMP EQU 20h ; temp variable
WD0 EQU 21h ; desired speed channel 0
WD1 EQU 22h ; desired speed channel 1
WA0 EQU 23h ; actual speed 0
WA1 EQU 24h ; actual speed 1
WD EQU 25h ; desired speed for subroutine
WA EQU 26h ; actual speed for subroutine
KSPD EQU 27h ; desired speed * constant -> K*Wd
SPD0 EQU 28h ; desired speed * constant -> K*Wd
SPD1 EQU 29h ; desired speed * constant -> K*Wd
CYC_CNT EQU 30h ; cycle counter for feedback

;===
; Set starting point in program ROM to zero.
;===

ORG 0x000 ; processor reset vector
clrf PCLATH ; ensure page bits are claared
goto initial ; go to beginning of program

;===
; Interrupt Service Routine
;===

ORG 0x004 ; interrupt vector location
movwf w_temp ; save off current W register contents
movf STATUS,w ; move status register into W register
movwf status_temp ; save off contents of STATUS register

; isr code can go here or be located as a call subroutine elsewhere

movf status_temp,w ; retrieve copy of STATUS register
movwf STATUS ; restore pre-isr STATUS register contents
swapf w_temp,f
swapf w_temp,w ; restore pre-isr W register contents
retfie ; return from interrupt

45

;===
; Intail setup.
;===

initial
movlw D'144' ;initial speed of motor
movwf WD0 ;set inital speed
movwf WD1 ;set inital speed

;===
; Begin Main Body of Code
;===
; The main loop will reinitialize all the ports at this time.
; If timing or other factors become an issue, the main loop can be
; modified accordingly. It is good pratice to perodicaly reinitialize
; the configuration registers incase a glitch causes them to become upset.
;===

main
call InitializePORTS
call InitializeAD
call InitializePWM

movlw CYCLE ;get number of cycles for feedback
movwf CYC_CNT ;load counter
clrf TMR0 ;clear timers
clrf TMR1L
clrf TMR1H

update
bcf PIR1,TMR2IF ;clear period flag

movf WD0,W ;get speed seeting
movwf CCPR1L ;set dutycycle

movf WD1,W ;get speed seeting
movwf CCPR2L ;set dutycycle

wait
btfss PIR1,TMR2IF ;are we done with this cycle?
goto wait ;no we aren't
decfsz CYC_CNT,F ;is it time to update speed?
goto update ;no, use the same speed setting

;update speed variables WD0 and WD1
brk3 nop

call GetSpeed ;get an update of desired
;and actual speed

movf WA0,W ;get actual speed 0
movwf WA ;and save it as actual speed
movf SPD0,W ;get desired speed
movwf KSPD ;and save it as desired speed
call UpdateSpeed ;update the speed variable
movf WD,W ;get the resultant WD
movwf WD0 ;save the result

46

movf WA1,W ;get actual speed 1
movwf WA ;and save it as actual speed
movf SPD1,W ;get desired speed
movwf KSPD ;and save it as desired speed
call UpdateSpeed ;update the speed variable
movf WD,W ;get the resultant WD
movwf WD1 ;save the result

goto main ;do it again sam!

;===
; Subroutines
;===

;***** UpdateSpeed
; UpdateSpeed, solves the following equation:
; %DC = K*Wd + Kp * (Wd - W) where,
; %DC is the duty cycle which will equall the final WD in this routine
; K is 4 and Wd is 39 for our program. KSPD is 4*39=156 and SPD = 39.
; Kp is 3 for our program. W is the actual speed from the counters.
;
; I know this is a poor desription of this routine but in the interest
; of time I will leave this for a later description.

UpdateSpeed

movf KSPD,W ;get desired motor speed w/ contant
movwf WD ;for calculation (K=2)
bcf STATUS,C ;clear carry bit before rotate
rrf WD,F ;rotate to divide by 2
movf WA,W ;get actual speed
subwf WD,F ; WD = WD - WA
movf PORTB,W ;Get Kp from port B
movwf TEMP ;TEMP is multiply counter
movf WD,W ;get intial WD in W register

Again ; calculate Kp*(WD-WA)
Decfsz TEMP ;are we done adding?
goto Add ;no, so go Add
goto NewPWM ;yes we are, now WD = Kp*(WD-WA)

Add
addwf WD,F ;now WD = WD + intial WD
goto Again ; go see if we are done

NewPWM ;calculate WD = KSPD + WD
movf KSPD,W ;get desired motor speed w/ contant
addwf WD,F ; now WD has the update value

return

;***** GetSpeed
;GetSpeed, Update speed and get actual speed.
GetSpeed

movlw CH0 ;setup for Ch 0
movwf ADCON0 ;sets up A to D
call GetAD ;starts A to D
movf ADRES,W ;get a/d value

47

movwf SPD0 ;set speed 0
movlw CH1 ;setup for Ch 0
movwf ADCON0 ;sets up A to D
call GetAD ;starts A to D
movf ADRES,W ;get a/d value
movwf SPD1 ;set speed 1

movf TMR0,W ;get timer 0 value
movwf WA0 ;and save it as actual speed
movf TMR1L,W ;get timer 1 value
movwf WA1 ;and save it as actual speed

return

;***** GetAD
; GetAD starts the A to D and loops until the acquisition is finished.
; The channel should be selected before calling and the A to D should
; be ON.

GetAD
bcf PIR1,ADIF ;clear int flag
bsf ADCON0,GO ;start new conversion

loop
btfss PIR1,ADIF ;a/d done?
goto loop ;no, then keep checking
return

;***** InitializePORT
;InitializePORT, initializes and sets up the ports.
; Set I/O on ports

InitializePORTS
bsf STATUS,RP0 ;Bank 1
movlw B'111111' ;Port A 1 = input, 0 = output
movwf TRISA ;set port A I/O
movlw B'11111111' ;Port B 1 = input, 0 = output
movwf TRISB ;set port B I/O
movlw B'11111001' ;Port C 1 = input, 0 = output
movwf TRISC ;set port C I/O
movlw B'11111111' ;Port D 1 = input, 0 = output
movwf TRISD ;set port D I/O
movlw B'111' ;Port E 1 = input, 0 = output
movwf TRISE ;set port E I/O
bcf STATUS,RP0 ;Bank 0
return

;***** InitializeAD
;InitializeAD, initializes and sets up the A/D hardware.
;Select ch0 to ch7 as analog inputs.

InitializeAD
bsf STATUS,RP0 ;bank 1
movlw B'00000000' ;select ch0-ch7...
movwf ADCON1 ;as analog inputs
bcf STATUS,RP0 ;bank 0
movlw B'11000001' ;select:RC,ch0..
movwf ADCON0 ;turn on A/D.
clrf ADRES ;clr result reg.

48

return

;***** InitializePWM
;InitializePWM, initializes and sets up the PWM and TMR hardware.

InitializePWM
movlw B'00000101' ;timer2 ON and 4:1 Prescale
movwf T2CON ;setup timer2
bsf STATUS,RP0 ;bank 1
movlw H'FF' ;value for 2.44Khz w/4:1 presacle
movwf PR2 ;
movlw B'00101000' ;TMRO source to external rising edge,
movwf OPTION_REG ; Prescaler assigned to WDT
bcf STATUS,RP0 ;bank 0
movlw B'00111100' ;set the least sig bits to 11
iorwf CCP1CON,F ;on PWM 1 and set to PWM mode
iorwf CCP2CON,F ;on PWM 2 and set to PWM mode
movlw B'00000111' ;TMR1 to external
movwf T1CON ;
return

;***** SetupDelay
;This routine is a software delay of 10uS for the a/d setup.
;At 4Mhz clock, the loop takes 3uS, so initialize TEMp with
;a value of 3 to give 9uS, plus the move etc should result in
;a total time of > 10uS.

SetupDelay
movlw .3
movwf TEMP

SD
decfsz TEMP,F
goto SD
return

;===
; End of Program
;===

END ; directive 'end of program'

49

PWM Closed Loop
Proportional + Integral Control

Source Code

50

;***
;
; FILENAME: MOTOR1_1.ASM
;
; FILE VERSION: V1.1
;
; FILES REQUIRED: p16c77.inc
;
; DESCRIPTION: This program is setup to control the motors of the robot.
;
; PURPOSE: Motor control of Robot.
;
;
; NOTE: Used to develope PWM motor control and closed loop speed
; control.
;
;
; CHANGE HISTORY
; Date Author Description
; -------- --------- --
; 03/24/99 T.Miller Intial generation
; 03/27/99 T.Miller Added PWM Code
; 04/06/99 T.Miller Added code to close the loop useing encoders & timers
; 05/05/99 T.Miller Added new constants and uses portB for Kp
; 05/05/99 T.Miller Implmentation of PI controller
;
;***

;===
; Instruct Assembler to assemble for a PIC16C77 configured as shown.
;===

list p=16c77 ; list directive to define processor
#include <p16c77.inc> ; processor specific variable definitions

__CONFIG _CP_OFF & _WDT_OFF & _BODEN_ON & _PWRTE_ON & _XT_OSC

; '__CONFIG' directive is used to embed configuration data within .asm file.
; The lables following the directive are located in the respective .inc file.
; See respective data sheet for additional information on configuration word.

;===
; Initialize constants
;===

;***** A to D DEFINITIONS
; These defintions are used to selsect the A to D channel
; They are set to use the internal RC clock for conversion time
; They are also set to have the A to D turned on when the channel is
; is selected. So, use the following lines to set the channel and
; turn the A to D on using the internal RC conversion clock.
; movlw CHx ; Where CHx is CH1, CH2 ...
; movwf ADCON0 ;

CH0 EQU B'11000001' ; Channel 0
CH1 EQU B'11001001' ; Channel 1

51

CH2 EQU B'11010001' ; Channel 2
CH3 EQU B'11011001' ; Channel 3
CH4 EQU B'11100001' ; Channel 4
CH5 EQU B'11101001' ; Channel 5
CH6 EQU B'11110001' ; Channel 6
CH7 EQU B'11111001' ; Channel 7

;***** CONSTANT DEFINITIONS
;SPD EQU D'36' ; desired speed -> Wd
;KSPD EQU D'156' ; desired speed * constant -> K*Wd
CYCLE EQU D'20' ; cytle time for feedback

;***** VARIABLE DEFINITIONS
w_temp EQU 0x70 ; variable used for context saving
status_temp EQU 0x71 ; variable used for context saving

TEMP EQU 20h ; temp variable
WD0 EQU 21h ; desired speed channel 0
WD1 EQU 22h ; desired speed channel 1
WA0 EQU 23h ; actual speed 0
WA1 EQU 24h ; actual speed 1
ERR0 EQU 25h ; errorsum 0
ERR1 EQU 26h ; errorsum 1
WD EQU 27h ; desired speed for subroutine
WA EQU 28h ; actual speed for subroutine
ERR EQU 29h ; errorsum for subroutine
KSPD EQU 30h ; desired speed * constant -> K*Wd
SPD0 EQU 31h ; desired speed * constant -> K*Wd
SPD1 EQU 32h ; desired speed * constant -> K*Wd
CYC_CNT EQU 33h ; cycle counter for feedback

;===
; Set starting point in program ROM to zero.
;===

ORG 0x000 ; processor reset vector
clrf PCLATH ; ensure page bits are claared
goto initial ; go to beginning of program

;===
; Interrupt Service Routine
;===

ORG 0x004 ; interrupt vector location
movwf w_temp ; save off current W register contents
movf STATUS,w ; move status register into W register
movwf status_temp ; save off contents of STATUS register

; isr code can go here or be located as a call subroutine elsewhere

movf status_temp,w ; retrieve copy of STATUS register

52

movwf STATUS ; restore pre-isr STATUS register contents
swapf w_temp,f
swapf w_temp,w ; restore pre-isr W register contents
retfie ; return from interrupt

;===
; Intail setup.
;===

initial
movlw D'144' ;initial speed of motor
movwf WD0 ;set inital speed
movwf WD1 ;set inital speed
clrf ERR0 ;clear errorsum
clrf ERR1 ;clear errorsum

;===
; Begin Main Body of Code
;===
; The main loop will reinitialize all the ports at this time.
; If timing or other factors become an issue, the main loop can be
; modified accordingly. It is good pratice to perodicaly reinitialize
; the configuration registers incase a glitch causes them to become upset.
;===

main
call InitializePORTS
call InitializeAD
call InitializePWM

movlw CYCLE ;get number of cycles for feedback
movwf CYC_CNT ;load counter
clrf TMR0 ;clear timers
clrf TMR1L
clrf TMR1H

update
bcf PIR1,TMR2IF ;clear period flag

movf WD0,W ;get speed seeting
movwf CCPR1L ;set dutycycle

movf WD1,W ;get speed seeting
movwf CCPR2L ;set dutycycle

wait
btfss PIR1,TMR2IF ;are we done with this cycle?
goto wait ;no we aren't
decfsz CYC_CNT,F ;is it time to update speed?
goto update ;no, use the same speed setting

;update speed variables WD0 and WD1
brk3 nop

call GetSpeed ;get an update of desired
;and actual speed

movf WA0,W ;get actual speed 0
movwf WA ;and save it as actual speed

53

movf SPD0,W ;get desired speed
movwf KSPD ;and save it as desired speed
movf ERR0,W ;get errorsum 0
movwf ERR ;and save it as errorsum
call UpdateSpeed ;update the speed variable
movf WD,W ;get the resultant WD
movwf WD0 ;save the result
movf ERR,W ;get updated errorsum
movwf ERR0 ;and save it as errorsum 0

movf WA1,W ;get actual speed 1
movwf WA ;and save it as actual speed
movf SPD1,W ;get desired speed
movwf KSPD ;and save it as desired speed
movf ERR1,W ;get errorsum 1
movwf ERR ;and save it as errorsum
call UpdateSpeed ;update the speed variable
movf WD,W ;get the resultant WD
movwf WD1 ;save the result
movf ERR,W ;get updated errorsum
movwf ERR1 ;and save it as errorsum 1

goto main ;do it again sam!

;===
; Subroutines
;===

;***** UpdateSpeed
; UpdateSpeed, solves the following equation:
; %DC = K*Wd + Kp * (Wd - W) where,
; %DC is the duty cycle which will equall the final WD in this routine
; K is 4 and Wd is 39 for our program. KSPD is 4*39=156 and SPD = 39.
; Kp is 3 for our program. W is the actual speed from the counters.
;
; I know this is a poor desription of this routine but in the interest
; of time I will leave this for a later description.

UpdateSpeed

movf KSPD,W ;get desired motor speed w/ contant
movwf WD ;for calculation (K=2)
bcf STATUS,C ;clear carry bit before rotate
rrf WD,F ;rotate to divide by 2
movf WA,W ;get actual speed
subwf WD,F ; WD = WD - WA
movf ERR,W ;get errorsum
addwf WD,F ;now WD = ERR+(WD-WA)
movf WD,W ;get ready to update errorsum
movwf ERR ;and update it
movf PORTB,W ;get Kp from port B
movwf TEMP ;TEMP is multiply counter
movf WD,W ;get intial WD in W register

Again ; calculate Kp*(WD-WA)
decfsz TEMP ;are we done adding?
goto Add ;no, so go Add
goto NewPWM ;yes we are, now WD = Kp*(WD-WA)

54

Add
addwf WD,F ;now WD = WD + intial WD
goto Again ; go see if we are done

NewPWM ;calculate WD = KSPD + WD
movf KSPD,W ;get desired motor speed w/ contant
addwf WD,F ; now WD has the update value

return

;***** GetSpeed
;GetSpeed, Update speed and get actual speed.
GetSpeed

movlw CH0 ;setup for Ch 0
movwf ADCON0 ;sets up A to D
call GetAD ;starts A to D
movf ADRES,W ;get a/d value
movwf SPD0 ;set speed 0
movlw CH1 ;setup for Ch 0
movwf ADCON0 ;sets up A to D
call GetAD ;starts A to D
movf ADRES,W ;get a/d value
movwf SPD1 ;set speed 1

movf TMR0,W ;get timer 0 value
movwf WA0 ;and save it as actual speed
movf TMR1L,W ;get timer 1 value
movwf WA1 ;and save it as actual speed

return

;***** GetAD
; GetAD starts the A to D and loops until the acquisition is finished.
; The channel should be selected before calling and the A to D should
; be ON.

GetAD
bcf PIR1,ADIF ;clear int flag
bsf ADCON0,GO ;start new conversion

loop
btfss PIR1,ADIF ;a/d done?
goto loop ;no, then keep checking
return

;***** InitializePORT
;InitializePORT, initializes and sets up the ports.
; Set I/O on ports

InitializePORTS
bsf STATUS,RP0 ;Bank 1
movlw B'111111' ;Port A 1 = input, 0 = output
movwf TRISA ;set port A I/O
movlw B'11111111' ;Port B 1 = input, 0 = output
movwf TRISB ;set port B I/O
movlw B'11111001' ;Port C 1 = input, 0 = output
movwf TRISC ;set port C I/O
movlw B'11111111' ;Port D 1 = input, 0 = output
movwf TRISD ;set port D I/O

55

movlw B'111' ;Port E 1 = input, 0 = output
movwf TRISE ;set port E I/O
bcf STATUS,RP0 ;Bank 0
return

;***** InitializeAD
;InitializeAD, initializes and sets up the A/D hardware.
;Select ch0 to ch7 as analog inputs.

InitializeAD
bsf STATUS,RP0 ;bank 1
movlw B'00000000' ;select ch0-ch7...
movwf ADCON1 ;as analog inputs
bcf STATUS,RP0 ;bank 0
movlw B'11000001' ;select:RC,ch0..
movwf ADCON0 ;turn on A/D.
clrf ADRES ;clr result reg.
return

;***** InitializePWM
;InitializePWM, initializes and sets up the PWM and TMR hardware.

InitializePWM
movlw B'00000101' ;timer2 ON and 4:1 Prescale
movwf T2CON ;setup timer2
bsf STATUS,RP0 ;bank 1
movlw H'FF' ;value for 2.44Khz w/4:1 presacle
movwf PR2 ;
movlw B'00101000' ;TMRO source to external rising edge,
movwf OPTION_REG ; Prescaler assigned to WDT
bcf STATUS,RP0 ;bank 0
movlw B'00111100' ;set the least sig bits to 11
iorwf CCP1CON,F ;on PWM 1 and set to PWM mode
iorwf CCP2CON,F ;on PWM 2 and set to PWM mode
movlw B'00000111' ;TMR1 to external
movwf T1CON ;
return

;***** SetupDelay
;This routine is a software delay of 10uS for the a/d setup.
;At 4Mhz clock, the loop takes 3uS, so initialize TEMp with
;a value of 3 to give 9uS, plus the move etc should result in
;a total time of > 10uS.

SetupDelay
movlw .3
movwf TEMP

SD
decfsz TEMP,F
goto SD
return

;===
; End of Program
;===

56

END ; directive 'end of program'

57

Wall Following
Source Code

58

;***
;
; FILENAME:MOTOR2.ASM
;
; FILE VERSION:V2.0
;
;FILES REQUIRED:p16c77.inc
;
; DESCRIPTION:This program is setup to control the motors of the robot.
;
; PURPOSE:Motor control of Robot.
;
;
; NOTE:Used to develope PWM motor control and closed loop speed
; control.
;
;
; CHANGE HISTORY
; Date Author Description
; -------- --------- --
; 03/24/99 T.Miller Intial generation
; 03/27/99 T.Miller Added PWM Code
; 04/06/99 T.Miller Added code to close the loop useing encoders & timers
; 05/05/99 T.Miller Added new constants and uses portB for Kp
; 05/06/99 T.Miller Added Wall following anf interface control. Still
; need to check for overflow problems on PWM settings.
;
;***

;===
; Instruct Assembler to assemble for a PIC16C77 configured as shown.
;===

list p=16c77 ; list directive to define processor
#include <p16c77.inc> ; processor specific variable definitions

__CONFIG _CP_OFF & _WDT_OFF & _BODEN_ON & _PWRTE_ON & _XT_OSC

; '__CONFIG' directive is used to embed configuration data within .asm file.
; The lables following the directive are located in the respective .inc file.
; See respective data sheet for additional information on configuration word.

;===
; Initialize constants
;===

;***** A to D DEFINITIONS
; These defintions are used to selsect the A to D channel
; They are set to use the internal RC clock for conversion time
; They are also set to have the A to D turned on when the channel is
; is selected. So, use the following lines to set the channel and
; turn the A to D on using the internal RC conversion clock.
; movlw CHx ; Where CHx is CH1, CH2 ...
; movwf ADCON0 ;

CH0 EQU B'11000001' ; Channel 0

59

CH1 EQU B'11001001' ; Channel 1
CH2 EQU B'11010001' ; Channel 2
CH3 EQU B'11011001' ; Channel 3
CH4 EQU B'11100001' ; Channel 4
CH5 EQU B'11101001' ; Channel 5
CH6 EQU B'11110001' ; Channel 6
CH7 EQU B'11111001' ; Channel 7

;***** CONSTANT DEFINITIONS
LWD EQU D'114' ; left wall distance
KSPDI EQU D'156' ; desired speed * constant -> K*Wd
PWMCYC EQU D'20' ; cycle time for feedback
WALCYC EQU D'6' ; cycle time for Wall feedback

;----- bits
STOP EQU H'0007' ;Stop bit
START EQU H'0000' ;Start bit
FIRED EQU H'0002' ;Fire Detect Bit
FIREE EQU H'0001' ;Fire Extinquish
WLINE EQU H'0003' ;White line detect

;----- Motor, Amp Gain, and others

FA0 EQU B'00001001' ;Foward, Gain = High
FA1 EQU B'00011001' ;Foward, Gain = Medium
FA2 EQU B'00111001' ;Foward, Gain = Low

BA0 EQU B'00000110' ;Bacward, Gain = High
BA1 EQU B'00010110' ;Bacward, Gain = Medium
BA2 EQU B'00110110' ;Bacward, Gain = Low

MSTP EQU B'00000000' ;Stop Motors, Gain = High
ALLSTP EQU B'00000000' ;Turn indecators and extinquisher off

;***** VARIABLE DEFINITIONS
w_temp EQU 0x70 ; variable used for context saving
status_temp EQU 0x71 ; variable used for context saving

TEMP EQU 20h ; temp variable
WD0 EQU 21h ; desired speed channel 0
WD1 EQU 22h ; desired speed channel 1
WA0 EQU 23h ; actual speed 0
WA1 EQU 24h ; actual speed 1
ERR0 EQU 25h ; errorsum 0
ERR1 EQU 26h ; errorsum 1
WD EQU 27h ; desired speed for subroutine
WA EQU 28h ; actual speed for subroutine
ERR EQU 29h ; errorsum for subroutine
KSPD EQU 30h ; desired speed * constant -> K*Wd
SPD0 EQU 31h ; desired speed * constant -> K*Wd
SPD1 EQU 32h ; desired speed * constant -> K*Wd
PWM_CNT EQU 33h ; cycle counter for PWM feedback
WAL_CNT EQU 33h ; cycle counter for Wall feedback
LWERR EQU 35h ; Left Wall error

60

;===
; Set starting point in program ROM to zero.
;===

ORG 0x000 ; processor reset vector
clrf PCLATH ; ensure page bits are claared
goto initial ; go to beginning of program

;===
; Interrupt Service Routine
;===

ORG 0x004 ; interrupt vector location
movwf w_temp ; save off current W register contents
movf STATUS,w ; move status register into W register
movwf status_temp ; save off contents of STATUS register

; isr code can go here or be located as a call subroutine elsewhere

movf status_temp,w ; retrieve copy of STATUS register
movwf STATUS ; restore pre-isr STATUS register contents
swapf w_temp,f
swapf w_temp,w ; restore pre-isr W register contents
retfie ; return from interrupt

;===
; Intail setup.
;===

initial
movlw KSPDI ;initial speed of motor
movwf WD0 ;set inital speed
movwf WD1 ;set inital speed
movlw WAL_CYC ;setup Wall interrupt cycle
movwf WAL_CNT
clrf ERR0 ;clear errorsum
clrf ERR1 ;clear errorsum

call InitializePORTS
call InitializeAD
call InitializePWM
call Start ;are we to start yet?

;===
; Begin Main Body of Code
;===
; The main loop will reinitialize all the ports at this time.
; If timing or other factors become an issue, the main loop can be
; modified accordingly. It is good pratice to perodicaly reinitialize
; the configuration registers incase a glitch causes them to become upset.
;===

main
call InitializePORTS
call InitializeAD
call InitializePWM

61

movlw PWMCYC ;get number of cycles for feedback
movwf PWM_CNT ;load counter
clrf TMR0 ;clear timers
clrf TMR1L
clrf TMR1H

update
bcf PIR1,TMR2IF ;clear period flag

movf WD0,W ;get speed seeting
movwf CCPR1L ;set dutycycle

movf WD1,W ;get speed seeting
movwf CCPR2L ;set dutycycle

wait
btfss PORTB,STOP ;check if we are to stop
call Stop ;goto stop routine
btfss PIR1,TMR2IF ;are we done with this cycle?
goto wait ;no we aren't
decfsz PWM_CNT,F ;is it time to update speed?
goto update ;no, use the same speed setting

;update speed variables WD0 and WD1
brk3 nop

decfsz WAL_CNT ;update wall distance?
goto UpdatePWM ;just update PWM w/o wall
call GetSpeed ;get an update of desired speed

movf TMR0,W ;get timer 0 value
movwf WA ;and save it as actual speed
movf SPD0,W ;get desired speed
movwf KSPD ;and save it as desired speed
call UpdateSpeed ;update the speed variable
movf WD,W ;get the resultant WD
movwf WD0 ;save the result

movf TMR1L,W ;get timer 1 value
movwf WA ;and save it as actual speed
movf SPD1,W ;get desired speed
movwf KSPD ;and save it as desired speed
call UpdateSpeed ;update the speed variable
movf WD,W ;get the resultant WD
movwf WD1 ;save the result

goto main ;do it again sam!

;===
; Subroutines
;===

;***** Start
; Start, poles the Start bit to see if it has gone low.

Start
btfsc PORTB,START ;test the start bit

62

goto Start ;not cleared, keep checking
return ;ok, you can start now!

;***** Stop
; Stop, turns motors off and spins here

Stop
movlw MSTP ;get motor stop settings
movwf PORTD ;
movlw ALLSTP ;get all stop settings
movwf PORTB ;
goto Stop ;just something todo
return ;to bad, I am never executed!

;***** UpdateSpeed
; UpdateSpeed, solves the following equation:
; %DC = K*Wd + Kp * (Wd - Wa) where,
; %DC is the duty cycle which will equall the final WD in this routine.
; K is 2 and Kp = 1. Wd is the desired speed which is = KSPD/2.
;
; I know this is a poor desription of this routine but in the interest
; of time I will leave this for a later description.

UpdateSpeed

movf KSPD,W ;get desired motor speed w/ contant
movwf WD ;for calculation (K=2)
bcf STATUS,C ;clear carry bit before rotate
rrf WD,F ;rotate to divide by 2
movf WA,W ;get actual speed
subwf WD,F ; WD = WD - WA
movf KSPD,W ;get desired motor speed w/ contant
addwf WD,F ; now WD has the update value

return

;***** GetSpeed
;GetSpeed, Update speed and get actual speed.
GetSpeed

;update speed registers
movlw KSPD ;get overall desired speed
movwf SPD0 ;set speed 0
movwf SPD1 ;set speed 1

;get wall distance and calculate error
movlw LWD ;get desired distance
movwf LWERR ;and set up for calculation

movlw CH0 ;setup for Ch 0, Left Wall
movwf ADCON0 ;sets up A to D
call GetAD ;starts A to D
movf ADRES,W ;get a/d value
subwf LWERR ;calculate distance error

;update speeds
movf LWERR,F ;get distance error
subwf SPD0,F ; SPDO = SPD0 - LWERR
addwf SPD1,F ; SPDO = SPD0 + LWERR

63

movlw WAL_CYC ;setup Wall interrupt cycle
movwf WAL_CNT
return

;***** GetAD
; GetAD starts the A to D and loops until the acquisition is finished.
; The channel should be selected before calling and the A to D should
; be ON.

GetAD
bcf PIR1,ADIF ;clear int flag
bsf ADCON0,GO ;start new conversion

loop
btfss PIR1,ADIF ;a/d done?
goto loop ;no, then keep checking
return

;***** InitializePORT
;InitializePORT, initializes and sets up the ports.
; Set I/O on ports

InitializePORTS
bsf STATUS,RP0 ;Bank 1
movlw B'111111' ;Port A 1 = input, 0 = output
movwf TRISA ;set port A I/O
movlw B'11110001' ;Port B 1 = input, 0 = output
movwf TRISB ;set port B I/O
movlw B'11111001' ;Port C 1 = input, 0 = output
movwf TRISC ;set port C I/O
movlw B'11000000' ;Port D 1 = input, 0 = output
movwf TRISD ;set port D I/O
movlw B'111' ;Port E 1 = input, 0 = output
movwf TRISE ;set port E I/O
bcf STATUS,RP0 ;Bank 0
return

;***** InitializeAD
;InitializeAD, initializes and sets up the A/D hardware.
;Select ch0 to ch7 as analog inputs.

InitializeAD
bsf STATUS,RP0 ;bank 1
movlw B'00000000' ;select ch0-ch7...
movwf ADCON1 ;as analog inputs
bcf STATUS,RP0 ;bank 0
movlw B'11000001' ;select:RC,ch0..
movwf ADCON0 ;turn on A/D.
clrf ADRES ;clr result reg.
return

;***** InitializePWM
;InitializePWM, initializes and sets up the PWM and TMR hardware.

InitializePWM
movlw B'00000101' ;timer2 ON and 4:1 Prescale
movwf T2CON ;setup timer2
bsf STATUS,RP0 ;bank 1

64

movlw H'FF' ;value for 2.44Khz w/4:1 presacle
movwf PR2 ;
movlw B'00101000' ;TMRO source to external rising edge,
movwf OPTION_REG ; Prescaler assigned to WDT
bcf STATUS,RP0 ;bank 0
movlw B'00111100' ;set the least sig bits to 11
iorwf CCP1CON,F ;on PWM 1 and set to PWM mode
iorwf CCP2CON,F ;on PWM 2 and set to PWM mode
movlw B'00000111' ;TMR1 to external
movwf T1CON ;
return

;***** SetupDelay
;This routine is a software delay of 10uS for the a/d setup.
;At 4Mhz clock, the loop takes 3uS, so initialize TEMp with
;a value of 3 to give 9uS, plus the move etc should result in
;a total time of > 10uS.

SetupDelay
movlw .3
movwf TEMP

SD
decfsz TEMP,F
goto SD
return

;===
; End of Program
;===

END ; directive 'end of program'

