
EE 548 Project 3 Due: T 11/19/2013

Inverse Kinematics with Trajectory Planning

This project will expand upon your program to simulate and visualize robotic manipu-
lators. So far, you program should compute the direct/forward (position and differential)
kinematics, and display a manipulator in three dimensions with DH frames and end-
effector velocity. The ability to generate trajectories and compute inverse kinematics will
be added to your robot simulator and visualizer. A different approach will be taken for
each of two robotic manipulators.

1. Incorporate the following items into a complete simulation and visualization of the
Adept Cobra s800 SCARA Robot:

(a) compute the inverse kinematics (let’s choose the left-elbow configurations) of
the robot for the desired initial pose Tei and final pose Tef given below

Tei =



1 0 0 500

0 −1 0 −500

0 0 −1 350

0 0 0 1


, Tef =



1
2

√
3
2

0 −250
√
3
2

−1
2

0 500

0 0 −1 50

0 0 0 1


(b) connect the initial and final joint variables with Linear-Segment Parabolic-

Blends using a start time of to = 0 sec, an end time of tf = 4 sec, and velocities
V = 1.2

qf−qo
tf

(c) assume you have perfect joint controllers such that your joint variables track
your desired values in the trajectory, and simulate (compute forward position
and differential kinematics) and visualize your robot for these joint trajectories

(d) turn in the following along with showing me your visualization

i. initial and final values of joint variables that correspond to initial and final
poses

ii. plot of desired trajectories for joint variables and velocities

iii. plot of end-effector’s position, orientation (as angle-axis), linear velocity
and angular velocity

iv. some snap shots of your animation (maybe a start-middle-end or bread-
crumb trail)



EE 548 Project 3 Due: T 11/19/2013

2. Incorporate the following items into a complete simulation of the Stanford Arm:

(a) connect the desired initial and final poses of the robot given below with quintic
polynomials (start and end at rest), a start time of to = 0 sec and an end
time of tf = 4 sec making use of angle-axis for orientation; note you’ll need to

generate desired trajectories for the end-effector’s position ~pde, orientation ~φde

as angle-axis, linear velocity ~̇pde and angular velocity ~ωde

Tei =



0 0 1 2

0 1 0 −2

−1 0 0 5

0 0 0 1


, Tef =



1
2

√
3
2

0 −2
√
3
2

−1
2

0 2

0 0 −1 1

0 0 0 1


(b) compute the inverse kinematics (let’s choose the left-arm configuration) of the

robot for the desired initial pose Tei; this will serve as the initial values for the
joint variables

(c) iteratively compute the inverse kinematics via the method of damped-least-
squares with numerical integration (you can get fancy or use Euler as shown
below)

~̇qd = (W + JTJ)−1JT (~vde +K(~xd − ~x))

~qd = ~qd + ~̇qd∆t

where we’ll start with ∆t = 0.01 sec, W = diag(0.01), K = diag(1)

(d) assume you have perfect joint controllers such that your joint variables track
your desired values in the trajectory, and simulate (compute forward position
and differential kinematics) and visualize your robot for these joint trajectories

(e) turn in the following along with showing me your visualization

i. plot of end-effector’s desired position, orientation, linear velocity and an-
gular velocity

ii. plot of desired trajectories for joint variables and velocities

iii. plot of end-effector’s position, orientation (as angle-axis), linear velocity
and angular velocity

iv. some snap shots of your animation (maybe a start-middle-end or bread-
crumb trail)


