Forward Kinematics and 3D Viewer

1. Write a program (Matlab preferred) to compute the direct/forward (position) kinematics and display a manipulator in three dimensions.
The program should take the following as inputs:
(a) DH table with parameters, and
(b) joint variables \vec{q} keeping in mind we will likely use a series of joint variables in the future for animation of motion.

The program should output or show:
(a) homogeneous transformation matrix T_{n}^{0} representing the end-effector's pose;
(b) 3D visualization of robot using lines, cylinders or fancier objects to represent joints and links (see figure below as simple example); and
(c) display of frames 0 to n (with ability to turn them on/off).

Puma 260

Figure 1: Visualization of Puma 260 via Matlab using line(), quiver() and text()
2. Implement the following robots (with details provided in handout) in your program: Stanford Arm, Puma 260, Adept Cobra s800, and planar RRP. Note it should be easy to implement a new manipulator through specification of its DH table and joint variables.
3. Test your forward kinematics and visualizations for a variety of values of joint variables including moving one joint at a time. Turn in a copy of your programs, and results (T_{n}^{0} plus visualization) for the cases when all $q_{i}=0\left(\mathrm{rad}\right.$ or dist); all $q_{i}=1$ $\left(\mathrm{rad}\right.$ or dist), and all $q_{i}=-1(\mathrm{rad}$ or dist).

