Differential (Forward) Kinematics and Trajectory Planning

This project will expand upon your previous projects that compute angle/axis and Euler ZYZ angles from rotation matrices, direct/forward (position) kinematics, and visualization of a manipulator in three dimensions with DH frames. The abilities to compute and display differential kinematics as well as generate trajectories will be added.

- 1. Implement the following making use of your previous projects that compute and display forward kinematics, and compute representations of orientation from rotation matrices.
 - (a) Jacobian via the direct method along with the ability to compute and display the end-effector's (frame n's) linear and angular velocity on the 3D visualization.
 - (b) Trajectory planning via a quintic polynomial and Linear Segments with Parabolic Blends (LSPB) that satisfy given constraints on initial and final configurations.
 - (c) Capability to plot the following versus time
 - i. positions \vec{q} and velocities $\dot{\vec{q}}$ of joints;
 - ii. end-effector's position $\vec{o}_n^0 = [o_x, o_y, o_z]^T$ and linear velocity $\dot{\vec{o}_n}$; and
 - iii. end-effector's orientation as Euler ZYZ angles (ϕ, θ, ψ) or angle/axis $\vec{r} = [r_x, r_y, r_z]^T = [\theta k_x, \theta k_y, \theta k_z]^T$, and angular velocity $\vec{\omega}_{0,n}^0 = [\omega_x, \omega_y, \omega_z]^T$.
- 2. The project should make use of functions and take the following as user-defined inputs:
 - (a) DH table with parameters;
 - (b) specifications for joint variables' trajectories to include initial and final times, initial and final positions, initial and final velocities, and initial and final accelerations; and
 - (c) trajectory type (quintic or LSPB).
- 3. The program should have the options and ability to output/show:
 - (a) 3D visualization of robot using lines, cylinders or fancier objects to represent joints and links;
 - (b) display frames 0 to n on robot's visualization;
 - (c) display linear and angular velocity vectors at/for the end-effector;
 - (d) values of homogeneous transformation matrix representing the end-effector's pose;
 - (e) values of Jacobian;

- (f) values of the end-effector's position, linear velocity, orientation as Euler ZYZ angles or angle/axis, and angular velocity; and
- (g) plots (versus time) of joint variables, joint velocities, and the end-effector's position, linear velocity, orientation as Euler ZYZ angles or angle/axis, and angular velocity.
- 4. Use your resulting program/functions to perform the following.
 - (a) Simulate and visualize the Stanford arm using quintic trajectories for the joint variables. Let $\vec{q}(t_o = 0) = -\vec{1}$, $\vec{q}(t_f = 10) = \vec{1}$ with units of distance or radians, $\vec{q}(t_o) = \vec{q}(t_f) = \vec{q}(t_o) = \vec{q}(t_f) = \vec{0}$. Provide values of the forward kinematics T_n^0 and Jacobian J at the initial and final times; and plot (versus time) the joint variables, joint velocities, and the end-effector's position, linear velocity, orientation as Euler ZYZ angles and angle/axis, and angular velocity.
 - (b) Simulate and visualize the Puma 260 using quintic trajectories for the joint variables. Let $\vec{q}(t_o = 0) = -\vec{1}$, $\vec{q}(t_f = 10) = \vec{1}$ with units of radians, $\vec{q}(t_o) = \vec{q}(t_f) = \vec{q}(t_o) = \vec{q}(t_f) = \vec{0}$. Provide values of the forward kinematics T_n^0 and Jacobian J at the initial and final times; and plot (versus time) the joint variables, joint velocities, and the end-effector's position, linear velocity, orientation as Euler ZYZ angles and angle/axis, and angular velocity.
 - (c) Simulate and visualize the Adept SCARA using LSPB trajectories for the joint variables. Let $\vec{q}(t_o = 0) = [-1, -1, 0, -1]^T$, $\vec{q}(t_f = 10) = [1, 1, 300, 1]^T$ with units of distance or radians, $\vec{q}(t_o) = \vec{q}(t_f) = \vec{0}$. Provide values of the forward kinematics T_n^0 and Jacobian J at the initial and final times; and plot (versus time) the joint variables, joint velocities, and the end-effector's position, linear velocity, orientation as Euler ZYZ angles and angle/axis, and angular velocity.
- 5. Turn in your programs, sample visualizations (maybe bread-crumbs, initial/final configurations, ...), values of initial and final forward kinematics and Jacobian, and plots of values versus time for the three robots and scenarios.