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Overview and HW # 9

= Chapter6.1
= Chapter 6.2
= Chapter 6.3

= Homework: 6.23 (4t edition)/6.22 (5t edition)) and Special Problem 3



Overview and HW # 9

= Homework: 6.23/6.22

= Use Newton-Raphson to find a solution to

AN L2 N\
[COS(x1 + 1) T 10.5] where x; and x, are in radians.
= A)start with x;(0) = 1.0 and x,(0) = 0.5 and continue until

‘x"("“)‘x"(") < & with £ = 0.005
X1 (1) ' '

= B)Show that this method diverges if x;(0) = 1.0 and x,(0) = 2.0




Overview and HW # 9

Homework: Special problem 3

10 20 33 901
41.7 26 61 b = |542
77 82 91 817

= |n Matlab, using the tic and toc commands:

= Given 4 =

= A) compare the time used for x=inv(A)*b, x=A\b, lu decomposition (use
[L,U]=lu(A) command),.

= B)using the Jacobi method: D -x(i+ 1) = (D — A) - x(i) + b, start at k=1
iterations and go to k=10. Comment on the time and the convergence of
the method.



Overview and HW # 9

= Homework: Special problem 3

—41.5773
= A) checkix =| 14.4272
31.1584



Chapter 6.1: Gaussian Elimination

= Development/review:
= Given a matrix of size (n x n)

= Can be solved using the following elementary operations:

= |. Interchange two rows
= |I. Multiply a row by a nonzero real number
= |ll. Replace a row by its sum with a multiple of another row
= e = = =
An  Ap Ay | | x1 Y1
Ay Ax Aon | | x2 2




Chapter 6.1: Gaussian Elimination

Solution for row two:

Aq A

A

A
0 (Azz = —ﬂAu)

X1
X2

X3

L XN




Chapter 6.1: Gaussian Elimination

= Final format (row echelon form):

" This can be further simplified to where 4;; =1, i =1...N

= Thisis reduced row echelon form and can be computed in MATLAB using

rref(A)

AN-1 N

AN— I,N

Ann

¢
2

VYN-1
YN




Chapter 6.1: Gaussian Elimination

= Example 6.1
= Solve: [120 g] [2]=[S] in matrix notation LOW 2] _[ ]
= Solution
il B Y1
- @)= be- )




Chapter 6.1: Gaussian Elimination

Example 6.1 cont.

o allul = [

Using back substitution:

. x, =2 =22 =0.225
Ay, 8
6—(5)(0.225)

[ | X4 = 3’1—A12x2 = = O 4875
1 Aqq 10 '




Chapter 6.1: LU Decomposition

= Similarly LU is the matrix form of Gaussian Elimination, which also allows for
the use of sparse matrices.

=  A=LU such that: (3x3 case) :

A1 Qzz 043 l,by L, O 0 up; uys

i1 Qg a13] lia 0 O lun Up2 u1j
azi 043z 0ass BN AN o 0 us;

" This allows the solution of Ax = y in the form:
= 1) Lb=y
= 2)Ux=0b



Chapter 6.1: LU Decomposition

= Example 6.1 using LU:
= A=LU
= using matlab [L,U] = lu(A) we obtain
10 5 10 5
[ 2NN [0 2 1] [ ]

'b=LWzlﬂJ

0.4875

0.225 <— which is the same as in example 6.1

= x=U\b=|



Chapter 6.2: Jacobi and Gauss-Seidel

= Jterative methods involve approximations of linear systems over k iterations
that continue until a stopping criteria is met
= Things to consider:
Will the iteration method converge?
What is the convergence rate (number of iterations)?

When using a computer, what are the storage and time constraints for the method being
used? ( usually storage is the more pertinent issue)

= A measure of the convergence can be expressed as a tolerance level:

L |xRGHD)—x (D) <efork=12..N andAx =y, wherexis (N x1)

Xk (1)

= ¢ istypically chosen to be a very small number, relative to the size of the
elements in the A and y matrices



BN _ —

Chapter 6.2: Jacobi and Gauss-Seidel

= Considering the equation for the k" element we can solve for x:

" Yk = Ag1X1 + ApoXpy + oo+ Ay + o+ Ay

" xp = — Yk — (Ag1x1 + -+ Agnxy)]
Akk

- N
Akk [ Z Akmxm =k+1 Akmxm]

= For each k™" element, this equation is iterated i times, such that we can
write the Jacobi method as:

] 1 .
= x(i+1)= T [Vk — Akmxm(l) Zm ic+1 A X CO)

where x; (i + 1)is the newest iteration



BN _ —

Chapter 6.2: Jacobi and Gauss-Seidel

= Similarly for Gauss-Seidel, considering the equation for the k" element we
can solve for x to obtain:

_ 1 k—1 N : .
" Xk = A_kk [YR n m=1Akmxm N m:k+1Akmxm] Same as Jacobi!
= The key difference is with Gauss-Seidel, for m < k, the x values used are
the updated ones, where as in Jacobi the original starting x values.

=  For Gauss-Seidel:

] 1 . . ]
" x(i+1) = o [Vk — 21]%:11 AP SRR Z%:k+1 Ao

= Note for both Gauss-Seidel and Jacobi, x;(0) = 0 typically



Chapter 6.2: Jacobi and Gauss-Seidel

= Both of these methods can be expressed in matrix form:

= x(i+1)=Mx(i)+D 'y whereM =D"1(D - A)

= Jacobi:

. 1 N . .
= x(i+1) = A_kk Yk — Zlfn=11 A O Z%:k+1 e |

= D =diagonal(A)

= Gauss-Seidel:

) 1 . ] .
. xk(l + 1) = A_kk [yk e 1121:11 Akmxm(l T 1) S0 Z%=k+1Akmxm (l)]

D = lower_triangular(A)



Chapter 6.2: Jacobi and Gauss-Seidel

= Example 6.3 (6.1 using Jacobi) Ax=y 10 5” ]= lg]

|~

= Equationl: x;(i+1) = Ai [y1 — A1x2 ()] =

11

[6 —5x,())] «——
Original x

values

o

Bl 20 ()] SN PA—-

O |~ =

= Equation2: x,(i+1) = Ai [y, — Az1x,(D)] =

27

=  Matrix form:

) . [10 0—1_0,1 0 o S 0 -0.5
=g O =[o 2 m=rre-m=|s T

= x(i+1)=Mx()+D 1y

0 -05 (i) 0.1 O
:[—3 0“2(2)]40 %hg]



Chapter 6.2: Jacobi and Gauss-Seidel

= Example 6.3 (6.1 using Jacobi) cont.

= |terations with goal of e < 10™*

JACOBI | g |} 2 3 4 5 6 7 8 9 10

x1(7) 0 0.60000 0.43334 0.50000 0.48148 0.48889 0.48683 0.48766 0.48743 0.48752 0.48749
x2() 0 0.33333 0.20000 0.23704 0.22222 0.22634 0.22469 0.22515 0.22496 0.22502 0.22500

As shown, the Jacobi method converges to the unique solution obtained in
Example 6.1. The convergence criterion is satisfied at the 10th iteration, since

x1(10) — x1(9)]  [0.48749 — 0.48752| |
x1(9) = 0.48749 =02
and
%(10) — x2(9)|  0.22500 — 0.22502 |
_ 3910 ¢ =
%2(9) 0.22502 -




Chapter 6.2: Jacobi and Gauss-Seidel

= Example 6.4 (6.1 using Gauss-Seidel)




Chapter 6.2: Jacobi and Gauss-Seidel

= Example 6.4 (6.1 using Gauss-Seidel)




Chapter 6.2: Jacobi and Gauss-Seidel

= Divergence and Method failure:
No iterative solution
Ay diagonal element is << the other diagonals

Fails if A, = 0 due to x5, = %[yk = ,";{:11 ApmXm — 2 i1 A ], which is
undefined!

=  Further issues can be caused by:
Setting the tolerance level € too small (causing an infinite loop)
Setting € too large and obtaining a wrong solution set

For N dimension size being very large, not enough memory

= Jacobiuses N? + 3N storage space, while GS uses N? + 2N due to the
updated x values



Chapter 6.2: Jacobi and Gauss-Seidel

= Divergence via no iterative solution:

= Example 6.5
_ _ 5 1071-_16
Using Gauss-Seidel to solve [9 7 ]X S [3]

= Equation1: x;(i+1) ==[6— 10x,(i)]

= Ul] =

= Equation2: x,(i+1)==[3—-9x;(i+ 1)]

2

Successive calculations of x; and x, are shown in the following table:

GAUSS-SEIDEL i 0 | 2 3 4 5
x1(i) 0 1.2 9 79.2 711 63
x2(i) 0 50 =3 —354.9 —3198 —28

0.225

=  Using x = A\y we find the exact soln. is lO 4875 = the method diverges!



Chapter 6.3: Newton-Raphson

= GivenAx =y, let f(x) = Ax s.t.

[ f1(x)]
- fao =29 =y
fN.(X)-
= To develop the iterative soln.
" y—flx)=0

» Dx+ f(x)=Dx+y where Dis (N X N)and x is the soln.vector
" x=x+D7'y—f(x)]
" x(+D=x@+ D {y - fIx®OB



Chapter 6.3: Newton-Raphson

= Convergence properties:

= x(i+1)=x()+ Dy — flx()]}, ignoring they term,

= x(i+1) =x() — D 1f[x(@i)], with specialcase D™! = al = «
" x(i+1) =x0) - afx@®]

(5)xG@+D = (3)*x® — Flx@)]



Chapter 6.3: Newton-Raphson

5 (i) x(i+1) = (%) x(@) = flx@]

= Solving for f(x) = 0 (again ignoring y for inspection) and varying a, we find
the graph this to be:

a= f(x¥)"!

\

\
\
\

F(x%

| Slope, 1= £'(x%)
o

Here we see can map the slope as
1
S f'(x) ~ we can say

frexG+1) = f)x@) = flx@)]



Chapter 6.3: Newton-Raphson

= f'@x+ D) = f'@x@ — flx@)]

= x(i+1) =x@)— ')t f[x(@@)], which can be rewritten as

: . ar]~t :
o X(l + 1) = x(l) - d_ﬂ f[x(l)] <—— so we are looking for something like this

= Returningtox(i + 1) = x(i) + D™ {y — flx(D]}

= To find D, y can be expanded using a Taylor series as:

=y =)+ L - x)

=y, = f(xg) +

=y, = f(xz) +

[0f1

0df1

_axl

(0>

_|_

axZ

0 />

_axl

_|_

axZ

0f1 ]

oy 28]
aXN_

about the point x;

(x —xq)

(x — x2)



Chapter 6.3: Newton-Raphson

* Solving y; = f(x) + [2E+ St 4+ ] G = x)

axN
= Ji(x—x;) =[y— f(x;)] multiplying each side by]l-_
= x=x + i =G

= Thus the Newton-Raphson method in matrix iteration format is:

" x(+D=x@+/O T {y—fx®O where

O N
dxq 0x, oxpy
G, ER 2
= J(i) =|oxs ox, AxN
ofn Ofn OfN
| 9x; 0x, axN_x:x(i)



Chapter 6.3: Newton-Raphson

= Example 6.7

Solve [

J

X1 + X
X1X2

0f1  Ofi]
. N 6x1 axZ
D=lor, s

[ dxq 0x5]

_[15

x(+ 1D =x@+JO " {y — flx®]

|

SNy

x1 (1)
x5 (1)

|+]

x1 (1)
— X2 (1)

Sl
1

I

o wol = J07=]

5—(x1 +x5)
50 — (x1x5)

x1 (1)
—x2(i)

—1
1



Chapter 6.3: Newton-Raphson

= Example 6.7 cont.

= Separating each equation and iterating for ¢ < 10~*

x5 x50 - w0

xl(l—!- 1) ?;xl(i) 1 x(1) = ()

i) e e a0 50 xl E0)

ixy (l) ——xj(i) ‘

. NEWTON- i g ! . 3

RAPHSON - -
x1 (i) 4 5.20000 4.99130 4.99998

o) 9 9.80000 10.00870 10.00002

Newton-Raphson converges in four iterations for this example.



