

4.9 For the circuit given in Fig. P4.9, suppose that $i_s(t) = 5 \cos 3t$ A. Find $v_o(t)$ and $v_s(t)$ by using current division.

Fig. P4.9

4.10 For the circuit given in Fig. P4.9, suppose that $i_s(t) = 5 \cos 3t$ A. Find $v_o(t)$ and $v_s(t)$ by using nodal analysis.

4.11 A voltage of $v_s(t) = 10 \cos \omega t$ V is applied to a scries *RLC* circuit. If $R = 5 \Omega$, $L = \frac{1}{5}$ H, and $C = \frac{1}{5}$ F, by how many degrees does $v_c(t)$ lead or lag $v_s(t)$ when (a) $\omega = 1 \text{ rad/s}$, (b) $\omega = 5 \text{ rad/s}$, and (c) $\omega = 10 \text{ rad/s}$?

4.12 A voltage of $v_s(t) = 10 \cos \omega t$ V is applied to a series *RLC* circuit. If $R = 5 \Omega$, $L = \frac{1}{5}$ H, and $C = \frac{1}{5}$ F, by how many degrees does $v_R(t)$ lead or lag $v_s(t)$ when (a) $\omega = 1 \text{ rad/s}$, (b) $\omega = 5 \text{ rad/s}$, and (c) $\omega = 10 \text{ rad/s}$?

4.13 For the *RLC* connection given in Fig. P4.13, find the impedance **Z** when ω is (a) 2, (b) 4, and (c) 8 rad/s.

Fig. P4.13

4.14 For the *RLC* connection shown in Fig. **P4.** find the admittance Y when ω is: (a) 1, (b) 3, (c) 7 rad/s.

Fig. P4.14

4.15 Show that a general expression for the pedance **Z** depicted in Fig. P4.13 is

$$\mathbf{Z} = \frac{32}{\omega^2 + 16} + j \frac{\omega(\omega^2 - 16)}{4(\omega^2 + 16)}$$

4.16 Show that a general expression for the mittance Y depicted in Fig. P4.14 is

$$\mathbf{Y} = \frac{1}{2(\omega^2 + 1)} + j \frac{\omega(\omega^2 - 9)}{20(\omega^2 + 1)}$$

4.17 For the circuit shown in Fig. P4.17, find Thévenin equivalent of the circuit in the shaded when $v_s(t) = 4 \cos(4t - 60^\circ)$ V. Use this to determine $v_o(t)$.

Fig. P4.17

- **.18** For the circuit shown in Fig. P4.17, find the **éve**nin equivalent of the circuit in the shaded box **en** $v_s(t) = 4 \cos(2t 60^\circ)$ V. Use this to deterine $v_o(t)$.
- 19 Find the frequency-domain Thévenin equivant (to the left of terminals a and b) of the circuit own in Fig. 4.20 on p. 211. (*Hint*: Use the fact that $= V_{\infty}/I_{sc}$.)
- 20 The frequency-domain Thévenin equivalent a circuit having $\omega = 5 \text{ rad/s}$ has $V_{\infty} = 1/-15.9^{\circ}$ V and $Z_{o} = 2.38 j0.667 \Omega$. Detere a corresponding time-domain Thévenin-equivalent circuit.
- 21 For the op-amp circuit shown in Fig. P4.21, $\mathbf{v}_o(t)$ when $\mathbf{v}_s(t) = 6 \sin 2t \text{ V}$.

P4.21

For the op-amp circuit given in Fig. P4.22, $v_s(t)$ when $v_s(t) = 3 \cos 2t \text{ V}$.

- **4.23** For the op-amp circuit shown in Fig. P4.23, find $v_o(t)$ when $v_s(t) = 4 \cos(2t 30^\circ)$ V. (See p. 258.)
- **4.24** For the circuit shown in Fig. P4.24, find the currents \mathbf{I}_1 and \mathbf{I}_2 when $\mathbf{V}_{s1}=250\sqrt{2/-30^\circ}$ V, $\mathbf{V}_{s2}=250\sqrt{2/-90^\circ}$ V, and $\mathbf{Z}=78-j45$ Ω .

Flg. P4.24

4.25 Use mesh analysis to find I_1 and I_2 for the circuit given in Fig. P4.25 when $V_{s1} = 250\sqrt{2/-30^{\circ}}$ V, $V_{s2} = 250\sqrt{2/-90^{\circ}}$ V, and $Z = 26 - j15 \Omega$.

Fig. P4.25

- **4.26** For the circuit shown in Fig. P4.9, when $i_s(t) = 5 \cos 3t$ A then $v_o(t) = 4.47 \cos(3t + 26.6^\circ)$ V. Find the average power absorbed by each element in the circuit.
- **4.27** For the circuit shown in Fig. P4.17, when $v_s(t) = 10 \cos 4t \text{ V}$, then the Thévenin equivalent of the portion of the circuit in the shaded box is $V_{oc} = 0$