- **4.7** Connect a 5- Ω resistor in parallel with the inductor in the circuit shown in Fig. P4.6. Suppose that $v_s(t) = 13 \cos(2t 22.6^{\circ})$ V. Find the voltage $v_o(t)$ across the inductor by using voltage division. Draw a phasor diagram. Is this circuit a lag network or a lead network?
- **4.8** Connect a 5- Ω resistor in parallel with the inductor in the circuit shown in Fig. P4.6. Suppose that $v_s(t) = 13 \cos(2t 22.6^\circ)$ V. Find the voltage $v_o(t)$ across the inductor by using nodal analysis. Draw a phasor diagram. Is this circuit a lag network or a lead network?
- **4.9** For the circuit given in Fig. P4.9, suppose that $i_s(t) = 5 \cos 3t$ **A. Find** $v_o(t)$ and $v_s(t)$ by using current division.

Fig. P4.9

- **4.10** For the circuit given in Fig. P4.9, suppose that $i_s(t) = 5 \cos 3t$ A. Find $v_o(t)$ and $v_s(t)$ by using nodal analysis.
- **4.11** A voltage of $v_s(t) = 10 \cos \omega t$ V is applied to a series *RLC* circuit. If $R = 5 \Omega$, $L = \frac{1}{5}$ H, and $C = \frac{1}{5}$ F, by how many degrees does $v_c(t)$ lead or lag $v_s(t)$ when (a) $\omega = 1$ rad/s, (b) $\omega = 5$ rad/s, and (c) $\omega = 10$ rad/s?
- **4.12** A voltage of $v_s(t) = 10 \cos \omega t$ V is applied to a series *RLC* circuit. If $R = 5 \Omega$, $L = \frac{1}{5}$ H, and $C = \frac{1}{5}$ F, by how many degrees does $v_R(t)$ lead or lag $v_s(t)$ when (a) $\omega = 1 \text{ rad/s}$, (b) $\omega = 5 \text{ rad/s}$, and (c) $\omega = 10 \text{ rad/s}$?
- **4.13** For the *RLC* connection given in Fig. P4.13, find the impedance \mathbb{Z} when ω is (a) 2, (b) 4, and (c) 8 rad/s.

Fig. P4.13

4.14 For the *RLC* connection shown in Fig. P4.14 find the admittance Y when ω is: (a) 1, (b) 3, and (c) 7 rad/s.

4.18 For th

4.19 Find t

with the le

-15.9° 1

121 For the

and up(t) when

No. P4.21

P4.22

#22 For the

w (t) when

 1Ω

Fig. P4.14

4.15 Show that a general expression for the impedance **Z** depicted in Fig. P4.13 is

$$\mathbf{Z} = \frac{32}{\omega^2 + 16} + j \frac{\omega(\omega^2 - 16)}{4(\omega^2 + 16)}$$

4.16 Show that a general expression for the admittance Y depicted in Fig. P4.14 is

$$\mathbf{Y} = \frac{1}{2(\omega^2 + 1)} + j \frac{\omega(\omega^2 - 9)}{20(\omega^2 + 1)}$$

4.17 For the circuit shown in Fig. P4.17, find the Thévenin equivalent of the circuit in the shaded box when $v_s(t) = 4 \cos(4t - 60^\circ)$ V. Use this to determine $v_o(t)$.

Fig. P4.17

- For the circuit shown in Fig. P4.17, find the senin equivalent of the circuit in the shaded box $v_t(t) = 4 \cos(2t 60^\circ)$ V. Use this to determine the circuit in the shaded box $v_t(t) = 4 \cos(2t 60^\circ)$ V.
- Find the frequency-domain Thévenin equivate the left of terminals a and b) of the circuit in Fig. 4.20 on p. 211. (Hint: Use the fact that V_{∞}/I_{∞} .)
- The frequency-domain Thévenin equivalent circuit having $\omega = 5$ rad/s has $V_{oc} = -15.9^{\circ}$ V and $Z_{o} = 2.38 j0.667 \Omega$. Deter-corresponding time-domain Thévenin-equivareuit.
- For the op-amp circuit shown in Fig. P4.21, when $v_s(t) = 6 \sin 2t \text{ V}$.

For the op-amp circuit given in Fig. P4.22, when $v_s(t) = 3 \cos 2t \text{ V}$.

E P4.22

4.23 For the op-amp circuit shown in Fig. P4.23, find $v_{\sigma}(t)$ when $v_{s}(t) = 4 \cos(2t - 30^{\circ})$ V. (See p. 258.)

4.24 For the circuit shown in Fig. P4.24, find the currents I_1 and I_2 when $V_{s1} = 250\sqrt{2}/-30^\circ$ V, $V_{s2} = 250\sqrt{2}/-90^\circ$ V, and $Z = 78 - j45 \Omega$.

Fig. P4.24

4.25 Use mesh analysis to find I_1 and I_2 for the circuit given in Fig. P4.25 when $V_{s1} = 250\sqrt{2/-30^\circ}$ V, $V_{s2} = 250\sqrt{2/-90^\circ}$ V, and $Z = 26 - j15 \Omega$.

Fig. P4.25

- **4.26** For the circuit shown in Fig. P4.9, when $i_s(t) = 5 \cos 3t$ A then $v_o(t) = 4.47 \cos(3t + 26.6^\circ)$ V. Find the average power absorbed by each element in the circuit.
- **4.27** For the circuit shown in Fig. P4.17, when $v_s(t) = 10 \cos 4t$ V, then the Thévenin equivalent of the portion of the circuit in the shaded box is $V_{\infty} =$

Fig. P4.23

 $4.47/-63.4^{\circ}$ V and $\mathbf{Z}_{o} = 1.6 + j4.8 \Omega$. (a) Replace the $4-\Omega$ load resistor by an impedance \mathbf{Z}_{L} that absorbs the maximum average power, and determine this maximum power. (b) Replace the $4-\Omega$ load resistor with a resistance R_{L} that absorbs the maximum power for resistive loads, and determine this power.

4.28 For the *RLC* circuit shown in Fig. P4.28, suppose that $v_s(t) = 10 \cos 3t$ V. Find the average power absorbed by the 4- Ω resistor for the case that (a) $C = \frac{1}{6}$ F; (b) $C = \frac{1}{18}$ F; (c) $C = \frac{1}{19}$ F.

Fig. P4.28

4.29 For the circuit shown in Fig. P4.29, suppose that $v_s(t) = 8 \cos 2t$ V. Find the average power absorbed by each element in the circuit for the case that $\mathbf{Z}_L = 1 \ \Omega$.

Fig. P4.29

4.30 For the circuit shown in Fig. P4.29, change the value of the resistor to 2 Ω and the value of the capacitor to $\frac{1}{4}$ F. Suppose that $v_s(t) = 8 \cos 2t$ V. (a) Find the load impedance \mathbf{Z}_L that absorbs the maximum average power, and determine this power. (b) Find the load resistance R_L that absorbs the maximum power for resistive loads, and determine this power.

4.31 For the op-amp circuit given in Fig. P4.21, when $v_s(t) = 6 \sin 2t$ V, then the output voltage $v_o(t) = 13.4 \cos(2t - 117^\circ)$ V. Find the average power absorbed by each element.

4.32 For the op-amp circuit given in Fig. P4.22, when $v_s(t) = 3 \cos 2t$ V, then the output voltage $v_o(t) = 10.6 \cos(2t + 135^\circ)$ V. Find the average power absorbed by each element.

4.33 For the op-amp circuit given in Fig. P4.23 when $v_s(t) = 4 \cos(2t - 30^\circ)$ V, then $v_1(t) = 1.6\cos(2t - 66.9^\circ)$ V and $v_o(t) = 1.6\cos(2t + 23.1^\circ)$ V. Find the average power absorbed by each element

4.34 For the circuit given in Fig. P4.24, when $V_{s1} = 250\sqrt{2/-30^{\circ}} \text{ V}$, $V_{s2} = 250\sqrt{2/-90^{\circ}} \text{ V}$, and $Z = 78 - j45 \Omega$, then $I_1 = 6.8/30^{\circ} \text{ A}$ and $I_2 = 6.8/-90^{\circ} \text{ A}$. (a) Find the average power absorbed by each impedance. (b) Find the average power supplied by each source.

4.35 For the circuit given in Fig. P4.25, when $V_{s1} = 250\sqrt{2/-30^{\circ}} \text{ V}$, $V_{s2} = 250\sqrt{2/-90^{\circ}} \text{ V}$, and $Z = 26 - j15 \Omega$, then $I_1 = 6.8/30^{\circ} \text{ A}$ and $I_2 = 6.8/-90^{\circ} \text{ A}$. (a) Find the average power absorbed by each impedance. (b) Find the average power supplied by each source.

** For the o will the average p the case that $v_i(t)$

For the op the average po-

Nu. P4.36

P4.38. (See p.

Find the m sine wave the $x = \frac{1}{2}(1 - \cos x)$

F4.39