

Fig. P1.30

Fig. P1.31

Fig. P1.32

Fig. P1.33

- 1.34 Consider the nonseries-parallel circuit shown in Fig. P1.34. (a) When $R = \frac{1}{2} \Omega$, then $v_1 = 6 \text{ V}$. Determine the resistance $R_{\rm eq} = V_s/i$ loading the battery.
- 1.35 Consider the nonseries-parallel circuit shown in Fig. P1.34. When $R = 4 \Omega$, then $v_1 = 4 \text{ V}$. Determine the resistance $R_{eq} = V_s/i$ loading the battery.
- **1.36** Consider the nonseries-parallel circuit shown in Fig. P1.34. Determine R and the resistance $R_{eq} =$ **V**, i loading the battery when $v_1 = 3$ V.

Fig. P1.34

- **1.44** Consider the circuit shown in Fig. P1.44. Find v when (a) K = 2, and (b) K = 4.
- **1.45** Consider the circuit shown in Fig. P1.45. Find i when (a) K = 2, and (b) K = 4.
- **1.46** Consider the circuit shown in Fig. P1.46. (a) Find the resistance $R_{eq} = v_1/i_1$. (b) Find the voltage in terms of the applied voltage v_1 .

Fig. P1.46

1.47 Consider the circuit shown in Fig. P1.47. (a) Find the resistance $R_{\rm eq} = v_1/i_1$. (b) Use voltage division to find v in terms of v_g . (c) Find the voltage in terms of the applied voltage v_1 .

Fig. P1.47

1.48 For the circuit shown in Fig. P1.48, suppose that $R = 10 \Omega$. Determine (a) v_s , and (b) $R_{eq} = v_s/i_s$.

Fig. P1.48

1.49 For the circuit shown in Fig. P1.48, suppose that $R = 8 \Omega$. Determine (a) v_s , and (b) $R_{eq} = v_s/i_s$.

Fig. P1.43

Fig. P1.44

Fig. P1.45