1.42 For the circuit shown in Fig. P1.42, find \(i_1 \) when (a) \(K = 2 \), (b) \(K = 3 \), and (c) \(K = 4 \).

![Fig. P1.42](image)

1.43 The circuit shown in Fig. P1.43 contains a voltage-dependent voltage source as well as a current-dependent current source. Find \(i_1 \) when (a) \(K = -3 \), (b) \(K = -1.5 \), and (c) \(K = 1.5 \).

![Fig. P1.43](image)

1.44 Consider the circuit shown in Fig. P1.44. Find \(v \) when (a) \(K = 2 \), and (b) \(K = 4 \).

![Fig. P1.44](image)

1.45 Consider the circuit shown in Fig. P1.45. Find \(i_1 \) when (a) \(K = 2 \), and (b) \(K = 4 \).

![Fig. P1.45](image)

1.46 Consider the circuit shown in Fig. P1.46. (a) Find the resistance \(R_{eq} = \frac{v}{i_1} \). (b) Find the voltage \(v_2 \) in terms of the applied voltage \(v \).

![Fig. P1.46](image)

1.47 Consider the circuit shown in Fig. P1.47. (a) Find the resistance \(R_{eq} = \frac{v}{i_1} \). (b) Use voltage division to find \(v \) in terms of \(v_2 \). (c) Find the voltage \(v_2 \) in terms of the applied voltage \(v \).

![Fig. P1.47](image)

1.48 For the circuit shown in Fig. P1.48, find that \(R = 10 \).

![Fig. P1.48](image)

1.49 For the circuit shown in Fig. P1.49, find that \(R = 8 \).

![Fig. P1.49](image)
2.1 For the circuit shown in Fig. P2.1, select node d as the reference node. (a) Use nodal analysis to find the node voltages. (b) Use the node voltages to determine i_1, i_2, i_3, and i_4.

![Fig. P2.1](image)

2.6 Find the node voltages for the circuit shown in Fig. P2.6.

![Fig. P2.6](image)

2.2 For the circuit shown in Fig. P2.1, select node c as the reference node. (a) Use nodal analysis to find the node voltages. (b) Use the node voltages to determine i_1, i_2, i_3, and i_4.

2.3 For the circuit shown in Fig. P2.1, select node b as the reference node. (a) Use nodal analysis to find the node voltages. (b) Use the node voltages to determine i_1, i_2, i_3, and i_4.

2.4 For the circuit shown in Fig. P2.1, select node a as the reference node. (a) Use nodal analysis to find the node voltages. (b) Use the node voltages to determine i_1, i_2, i_3, and i_4.

2.5 Find the node voltages for the circuit shown in Fig. P2.5.

![Fig. P2.5](image)

2.7 Find the node voltages for the circuit shown in Fig. P2.7. (See p. 100.)

2.8 Find the node voltages for the circuit shown in Fig. P2.8.

![Fig. P2.8](image)

2.9 Find the node voltages for the circuit shown in Fig. P2.9.

![Fig. P2.9](image)
2.60 Consider the circuit shown in Fig. P2.60. (a) Find the portion of \(i \) and the portion of \(v \) that are due to the 5-V voltage source. (b) Find the portion of \(i \) and the portion of \(v \) that are due to the 1-A current source. (c) Find \(i \) and \(v \).

2.61 Consider the circuit shown in Fig. P2.61. (a) Find the portion of \(i \) and the portion of \(v \) that are due to the 2-A current source. (b) Find the portion of \(i \) and the portion of \(v \) that are due to the 6-V voltage source. (c) Find the portion of \(i \) and the portion of \(v \) that are due to the 2-V voltage source. (d) Find \(i \) and \(v \).

2.62 Consider the circuit shown in Fig. P2.62. (a) Find the portion of \(i \) and the portion of \(v \) that are due to the 12-V voltage source. (b) Find the portion of \(i \) and the portion of \(v \) that are due to the 6-V voltage source. (c) Find the portion of \(i \) and the portion of \(v \) that are due to the 6-A current source. (d) Find \(i \) and \(v \).