is **balanced**. Under what condition (find an expression relating R_1 and R_2) will this bridge be balanced?

anced?
1.42 For the circuit shown in Fig. P1.42, find
$$i_1$$
 when (a) $K = 2$, (b) $K = 3$, and (c) $K = 4$.

1.43 The circuit shown in Fig. P1.43 contains a **voltage-dependent voltage source** as well as a current-dependent current source. Find i_1 when (a) K = -3, (b) K = -1.5, and (c) K = 1.5.

1.44 Consider the circuit shown in Fig. P1.44.

1.45 Consider the circuit shown in Fig. P1.45.

1.46 Consider the circuit shown in Fig. P1.46. (a) Find the resistance $R_{eq} = v_1/i_1$. (b) Find the voltage

Fig.

1.4

that

Fig.

1.4

that

Find ν when (a) K = 2, and (b) K = 4.

Find i when (a) K = 2, and (b) K = 4.

1.47 Consider the circuit shown in Fig. P1.47. (a) Find the resistance $R_{eq} = v_1/i_1$. (b) Use voltage division to find v in terms of v_g . (c) Find the voltage v_2 in terms of the applied voltage v_1 .

Fig. P1.43

Problems

2.1 For the circuit shown in Fig. P2.1, select node d as the reference node. (a) Use nodal analysis to find the node voltages. (b) Use the node voltages to determine i_1 , i_2 , i_3 , and i_4 .

Fig. P2.1

- **2.2** For the circuit shown in Fig. P2.1, select node c as the reference node. (a) Use nodal analysis to find the node voltages. (b) Use the node voltages to determine i_1 , i_2 , i_3 , and i_4 .
- **2.3** For the circuit shown in Fig. P2.1, select node b as the reference node. (a) Use nodal analysis to find the node voltages. (b) Use the node voltages to determine i_1 , i_2 , i_3 , and i_4 .
- **2.4** For the circuit shown in Fig. P2.1, select node a as the reference node. (a) Use nodal analysis to find the node voltages. (b) Use the node voltages to determine i_1 , i_2 , i_3 , and i_4 .
- **2.5** Find the node voltages for the circuit shown in Fig. P2.5.

Fig. P2.5

2.6 Find the node voltages for the circuit shown in Fig. P2.6.

Fig. P2.6

- **2.7** Find the node voltages for the circuit shown in Fig. P2.7. (See p. 100.)
- **2.8** Find the node voltages for the circuit shown in Fig. P2.8.

Fig. P2.8

2.9 Find the node voltages for the circuit shown in Fig. P2.9.

Fig. P2.9

Fig. P2.60

- **2.60** Consider the circuit shown in Fig. P2.60. (a) Find the portion of i and the portion of v that are due to the 6-V voltage source. (b) Find the portion of i and the portion of v that are due to the 1-A current source. (c) Find i and v.
- **2.61** Consider the circuit shown in Fig. P2.61. (a) Find the portion of i and the portion of v that are due to the 2-A current source. (b) Find the portion of i and the portion of v that are due to the 6-V voltage source. (c) Find the portion of i and the portion of v that are due to the 4-V voltage source. (d) Find i and v.

Fig. P2.61

2.62 Consider the circuit shown in Fig. P2.62. (a) Find the portion of i and the portion of v that are due to the 12-V voltage source. (b) Find the portion of i and the portion of v that are due to the 6-V voltage source. (c) Find the portion of i and the portion of v that are due to the 6-A current source. (d) Find i and v.

Fig. P2.62