- 5. Important circuit concepts such as the principle of superposition and Thévenin's theorem are also applicable in the frequency domain.
- 6. The instantaneous power absorbed by an element is equal to the product of the voltage across it and the current through it.
- 7. The average power absorbed by a resistance R having a sinusoidal current of amplitude I and voltage of amplitude V is

$$P_R = \frac{1}{2}VI = \frac{1}{2}RI^2 = \frac{1}{2}\frac{V^2}{R}$$

- 8. The average power absorbed by a capacitance or an inductance is zero.
- 9. A circuit whose Thévenin-equivalent (output) impedance is \mathbf{Z}_o transfers maximum power to a load \mathbf{Z}_L when \mathbf{Z}_L is equal to the complex conjugate of \mathbf{Z}_o .
- 10. For the case in which \mathbf{Z}_L is restricted to be purely resistive, maximum power is transferred when \mathbf{Z}_L equals the magnitude of \mathbf{Z}_o .
- 11. The effective or rms value of a sinusoid of amplitude A is $A/\sqrt{2}$.

Problems

- **4.1** Find the exponential form of the following complex numbers given in rectangular form: (a) 4 + j7, (b) 3 j5, (c) -2 + j3, (d) -1 j6, (e) **4.** (i) -5, (g) j7, (h) -j2.
- **4.2** Find the rectangular form of the following complex numbers given in exponential form:
- (a) $3e^{j70^{\circ}}$, (b) $2e^{j120^{\circ}}$, (c) $5e^{-j60^{\circ}}$, (d) $4e^{-j150^{\circ}}$, (e) $5e^{j90^{\circ}}$, (f) $e^{-j90^{\circ}}$, (g) $2e^{j180^{\circ}}$, (h) $2e^{-j180^{\circ}}$.
- **4.3** Find the rectangular form of the product $\mathbf{A}_1 \mathbf{A}_2$ even that: (a) $\mathbf{A}_1 = 3e^{j30^\circ}$, $\mathbf{A}_2 = 4e^{j60^\circ}$; (b) $\mathbf{A}_1 = 3e^{j30^\circ}$, $\mathbf{A}_2 = 4e^{-j30^\circ}$; (c) $\mathbf{A}_1 = 5e^{-j60^\circ}$, $\mathbf{A}_2 = 2e^{j120^\circ}$; (d) $\mathbf{A}_1 = 4e^{j45^\circ}$, $\mathbf{A}_2 = 2e^{-j90^\circ}$.
- **4.4** Find the rectangular form of the quotient A_1 A_2 for A_1 and A_2 given in Problem 4.3.

12. The average power absorbed by a resistance R having a current whose effective value is I_e and a voltage whose effective value is V_e is

$$P_R = V_e I_e = R I_e^2 = \frac{V_e^2}{R}$$

- 13. The power factor (pf) is the ratio of average power to apparent power.
- 14. If current lags voltage, the pf is lagging. If current leads voltage, the pf is leading.
- 15. Average or real power can be generalized with the notion of complex power.
- 16. The ordinary household uses a single-phase, three-wire electrical system.
- 17. The most common polyphase electrical system is the balanced three-phase system.
- 18. Three-phase sources are generally Y connected, and three-phase loads are generally Δ connected.
- 19. The device commonly used to measure power is the wattmeter.
- 20. Three-phase load power measurements can be taken with the two-wattmeter method.
- **4.5** Find the rectangular form of the sum $A_1 + A_2$ for A_1 and A_2 given in Problem 4.3.
- **4.6** For the ac circuit shown in Fig. P4.6, suppose that $v_s(t) = 13 \cos(2t 22.6^\circ)$ V. Find $v_o(t)$ by using voltage division. Draw a phasor diagram. Is this circuit a lag network or a lead network?

Fig. P4.6