Problems

An ideal voltage source is described by the motion $v(t) = 10e^{-t}$ V. Find the value of this voltage source when (a) t = 0 s, (b) t = 1 s, (c) t = 2 (d) t = 3 s, (e) t = 4 s.

An ideal voltage source is described by the motion $v(t) = 5 \sin (\pi/2)t$ V. Find the value of this source when (a) t = 0 s, (b) t = 1 s, t = 2 s, (d) t = 3 s, and (e) t = 4 s.

An ideal voltage source is described by the function $v(t) = 3 \cos(\pi/2)t$ V. Find the value of this source when (a) t = 0 s, (b) t = 1 s, (c) t = 2 s, (d) t = 3 s, and (e) t = 4 s.

1.4 Find the current in a region when the total charge in the region is described by the function (a) $q(t) = 4e^{-2t}$ C, (b) $q(t) = 3 \sin \pi t$ C, (c) $q(t) = 6 \cos 2\pi t$ C, and (d) $q(t) = 5e^{-4t} \cos 3t$ C.

1.5 An ideal voltage source is described by the function shown in Fig. P1.5. Find the value of this voltage source when (a) t = 0 s, (b) t = 1 s, (c) t = 2 s, (d) t = 3 s, and (e) t = 4 s.

Fig. P1.5

1.6 The total charge q(t) in some region is described by the function shown in Fig. P1.5. Sketch the current i(t) in this region.

1.7 Consider the circuit shown in Fig. P1.7. (a) Given $i_1 = 4$ A, find v_1 . (b) Given $i_2 = -2$ A, find v_2 . (c) Given $i_3 = 2$ A, find v_3 . (d) Given $i_4 = -2$ A, find v_4 .

Fig. P1.7

1.8 Consider the circuit in Fig. P1.7. (a) Given $v_1 = 30$ V, find i_1 . (b) Given $v_2 = 12$ V, find i_2 . (c) Given $v_3 = -9$ V, find i_3 . (d) Given $v_4 = -3$ V, find i_4 .

1.9 Consider the circuit shown in Fig. P1.7. (a) Given $v_1 = -10$ V, find i_1 . (b) Given $i_2 = 1$ A, find v_2 . (c) Given $v_3 = 3$ V, find i_3 . (d) Given $i_4 = 1$ A, find v_4 .

1.10 Consider the circuit in Fig. P1.10. (a) Given $v_1 = -6$ V, find i_1 . (b) Given $v_2 = 24$ V, find i_2 . (c) Given $v_3 = 11$ V, find i_3 . (d) Given $v_4 = 21$ V, find i_4 . (e) Given $v_5 = -14$ V, find i_5 .

1.11 Consider the circuit shown in Fig. P1.10. (a) Given $i_1 = 1.5$ A, find v_1 . (b) Given $i_2 = -4$ A, find v_2 . (c) Given $i_3 = 5.5$ A, find v_3 . (d) Given $i_4 = 3.5$ A, find v_4 . (e) Given $i_5 = 3.5$ A, find v_5 .

Fig. P1.10