1.30 Find \(v \) and \(i \) for the series-parallel circuit shown in Fig. P1.30.

1.31 Find \(v \) and \(i \) for the series-parallel circuit shown in Fig. P1.31.

1.32 Consider the circuit shown in Fig. P1.32. (a) Find \(i \), \(v_1 \), \(v_2 \), and \(v_3 \). (b) Remove the short circuit between \(a \) and \(b \) (erase it), and find \(i \), \(v_1 \), and \(v_2 \). (Don't try to find \(v_3 \)—it can't be done!)

1.33 Consider the series-parallel circuit shown in Fig. P1.33. (a) Find \(V_s \) when \(v_1 = 2 \) V. (b) Find \(V_s \) when \(i_3 = 3 \) A. (c) Find \(V_s \) when \(i_5 = 4 \) A. (d) What is the resistance \(R_{eq} = V_s/i \) loading the battery for part (a)? For part (b)? For part (c)?
1.34 Consider the nonseries-parallel circuit shown in Fig. P1.34. (a) When $R = \frac{1}{2} \Omega$, then $v_1 = 6$ V. Determine the resistance $R_{eq} = V_s/i$ loading the battery.

1.35 Consider the nonseries-parallel circuit shown in Fig. P1.34. When $R = 4 \Omega$, then $v_1 = 4$ V. Determine the resistance $R_{eq} = V_s/i$ loading the battery.

1.36 Consider the nonseries-parallel circuit shown in Fig. P1.34. Determine R and the resistance $R_{eq} = V_s/i$ loading the battery when $v_1 = 3$ V.
1.37 The nonseries-parallel circuit shown in Fig. P1.37 is known as a twin-T network. (a) When \(R_1 = 1 \, \Omega \) and \(R_2 = 3 \, \Omega \), then \(v_2 = 6 \, \text{V} \). Determine the resistance \(R_{\text{eq}} = V_s / i \) loading the battery.

1.38 For the twin-T network shown in Fig. P1.37, suppose that \(R_2 = \frac{3}{4} \, \Omega \) and \(v_2 = 3 \, \text{V} \). Determine \(R_1 \) and the resistance \(R_{\text{eq}} = V_s / i \) loading the battery.

1.39 Shown in Fig. P1.39 is a nonseries-parallel connection known as a bridge circuit. When \(R_1 = 10 \, \Omega \) and \(R_2 = 1 \, \Omega \), then \(v_1 = 10 \, \text{V} \). Find \(v_2, i, v_3, \) and the resistance \(R_{\text{eq}} = V_s / i \), loading the voltage source.

1.40 For the bridge circuit shown in Fig. P1.39, when \(R_1 = 2 \, \Omega \) and \(R_2 = 4 \, \Omega \), then \(v_1 = 4 \, \text{V} \). Find \(v_2, i, v_3, \) and the resistance \(R_{\text{eq}} = V_s / i \), loading the voltage source.

1.41 For the bridge circuit shown in Fig. P1.39, when the current \(i = 0 \, \text{A} \), we say that the bridge is balanced. Under what condition (find an expression relating \(R_1 \) and \(R_2 \)) will this bridge be balanced?

1.42 For the circuit shown in Fig. P1.42, find \(i_1 \) when (a) \(K = 2 \), (b) \(K = 3 \), and (c) \(K = 4 \).

1.43 The circuit shown in Fig. P1.43 contains a voltage-dependent voltage source as well as a current-dependent current source. Find \(i_1 \) when (a) \(K = -3 \), (b) \(K = -1.5 \), and (c) \(K = 1.5 \).

Fig. P1.37

Fig. P1.39

Fig. P1.42

Fig. P1.43
1.44 Consider the circuit shown in Fig. P1.44. Find v when (a) $K = 2$, and (b) $K = 4$.

1.45 Consider the circuit shown in Fig. P1.45. Find i when (a) $K = 2$, and (b) $K = 4$.

1.46 Consider the circuit shown in Fig. P1.46. (a) Find the resistance $R_{eq} = v_1/i_1$. (b) Find the voltage v_2 in terms of the applied voltage v_1.

1.47 Consider the circuit shown in Fig. P1.47. (a) Find the resistance $R_{eq} = v_1/i_1$. (b) Use voltage division to find v in terms of v_g. (c) Find the voltage v_2 in terms of the applied voltage v_1.

1.48 For the circuit shown in Fig. P1.48, suppose that $R = 10 \, \Omega$. Determine (a) v_s, and (b) $R_{eq} = v_s/i_s$.

1.49 For the circuit shown in Fig. P1.48, suppose that $R = 8 \, \Omega$. Determine (a) v_s, and (b) $R_{eq} = v_s/i_s$.

Fig. P1.47

Fig. P1.48

Fig. P1.43

Fig. P1.44

Fig. P1.45