

(c)

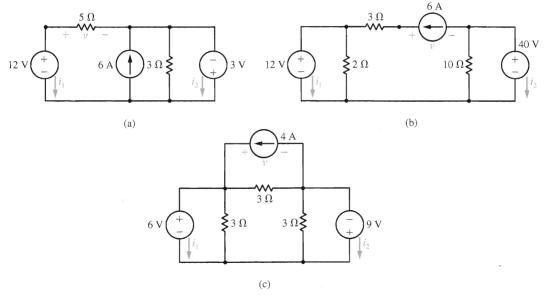
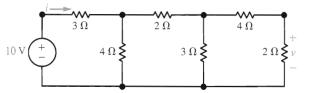


Fig. P1.27 a-c

1.30 Find v and i for the series-parallel circuit shown in Fig. P1.30.


1.31 Find v and i for the series-parallel circuit shown in Fig. P1.31.

1.32 Consider the circuit shown in Fig. P1.32. (a) Find *i*, v_1 , v_2 , and v_3 . (b) Remove the short circuit

between a and b (erase it), and find i, v_1 , and v_2 . (Don't try to find v_3 —it can't be done!)

(d)

1.33 Consider the series-parallel circuit shown in Fig. P1.33. (a) Find V_s when $v_1 = 2$ V. (b) Find V_s when $i_3 = 3$ A. (c) Find V_s when $i_5 = 4$ A. (d) What is the resistance $R_{eq} = V_s/i$ loading the battery for part (a)? For part (b)? For part (c)?

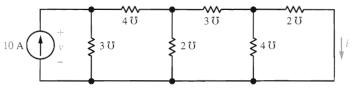


Fig. P1.31

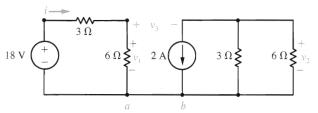
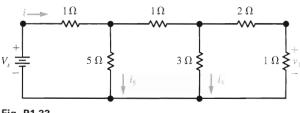



Fig. P1.32

1.34 Consider the nonseries-parallel circuit shown in Fig. P1.34. (a) When $R = \frac{1}{2} \Omega$, then $v_1 = 6$ V. Determine the resistance $R_{eq} = V_s/i$ loading the battery.

1.35 Consider the nonseries-parallel circuit shown in Fig. P1.34. When $R = 4 \Omega$, then $v_1 = 4 V$. Determine the resistance $R_{eq} = V_s/i$ loading the battery.

1.36 Consider the nonseries-parallel circuit shown in Fig. P1.34. Determine *R* and the resistance $R_{eq} = V_s/i$ loading the battery when $v_1 = 3$ V.

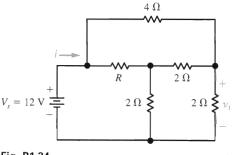
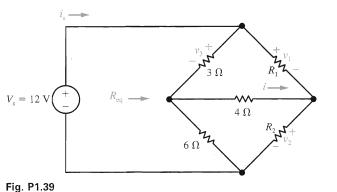


Fig. P1.34

1.37 The nonseries-parallel circuit shown in Fig. P1.37 is known as a **twin-T network**. (a) When $R_1 = 1 \ \Omega$ and $R_2 = 3 \ \Omega$, then $v_2 = 6 \ V$. Determine the resistance $R_{eq} = V_s/i$ loading the battery.

1.38 For the twin-T network shown in Fig. P1.37, suppose that $R_2 = \frac{3}{4} \Omega$ and $v_2 = 3$ V. Determine R_1 and the resistance $R_{eq} = V_s/i$ loading the battery.


1.39 Shown in Fig. P1.39 is a nonseries-parallel connection known as a **bridge circuit**. When $R_1 = 10 \ \Omega$ and $R_2 = 1 \ \Omega$, then $v_1 = 10 \ V$. Find v_2 , *i*, v_3 , and the resistance $R_{eq} = V_s/i_s$ loading the voltage source.

1.40 For the bridge circuit shown in Fig. P1.39, when $R_1 = 2 \Omega$ and $R_2 = 4 \Omega$, then $v_1 = 4 V$. Find v_2 , *i*, v_3 , and the resistance $R_{eq} = V_s/i_s$ loading the voltage source.

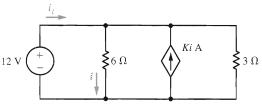
1.41 For the bridge circuit shown in Fig. P1.39, when the current i = 0 A, we say that the bridge

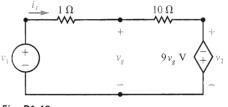
 $V_{s} = 12 \text{ V} \xrightarrow{+} 10 \Omega \overset{\text{def}}{=} 10 \Omega \overset{\text{def}}{=} R_{2} \overset{\text{def}}{=} 2 \Omega \overset{\text{def}$

Fig. P1.37

is **balanced**. Under what condition (find an expression relating R_1 and R_2) will this bridge be balanced?

1.42 For the circuit shown in Fig. P1.42, find i_1 when (a) K = 2, (b) K = 3, and (c) K = 4.




Fig. P1.42

1.43 The circuit shown in Fig. P1.43 contains a **voltage-dependent voltage source** as well as a current-dependent current source. Find i_1 when (a) K = -3, (b) K = -1.5, and (c) K = 1.5.

1.44 Consider the circuit shown in Fig. P1.44. Find v when (a) K = 2, and (b) K = 4.

1.45 Consider the circuit shown in Fig. P1.45. Find *i* when (a) K = 2, and (b) K = 4.

1.46 Consider the circuit shown in Fig. P1.46. (a) Find the resistance $R_{eq} = v_1/i_1$. (b) Find the voltage v_2 in terms of the applied voltage v_1 .

1.47 Consider the circuit shown in Fig. P1.47. (a) Find the resistance $R_{eq} = v_1/i_1$. (b) Use voltage division to find v in terms of v_g . (c) Find the voltage v_2 in terms of the applied voltage v_1 .

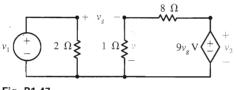
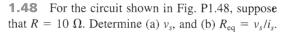



Fig. P1.47

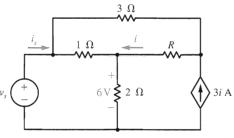
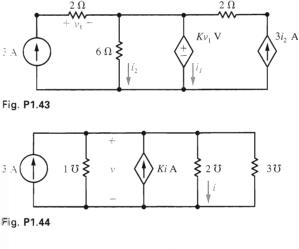
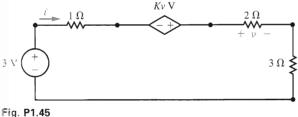




Fig. P1.48

1.49 For the circuit shown in Fig. P1.48, suppose that $R = 8 \Omega$. Determine (a) v_s , and (b) $R_{eq} = v_s/i_s$.

