Problems

2.1 For the circuit shown in Fig. P2.1, select node d as the reference node. (a) Use nodal analysis to find the node voltages. (b) Use the node voltages to determine i_1 , i_2 , i_3 , and i_4 .

Fig. P2.1

- **2.2** For the circuit shown in Fig. P2.1, select node as the reference node. (a) Use nodal analysis to find the node voltages. (b) Use the node voltages to determine i_1 , i_2 , i_3 , and i_4 .
- For the circuit shown in Fig. P2.1, select node as the reference node. (a) Use nodal analysis to the node voltages. (b) Use the node voltages to the man i_1 , i_2 , i_3 , and i_4 .
- For the circuit shown in Fig. P2.1, select node as the reference node. (a) Use nodal analysis to find the node voltages. (b) Use the node voltages to determine i_1 , i_2 , i_3 , and i_4 .
- 2.5 Find the node voltages for the circuit shown in Fig. P2.5.

Fig. P2.5

2.6 Find the node voltages for the circuit shown in Fig. P2.6.

Fig. P2.6

- **2.7** Find the node voltages for the circuit shown in Fig. P2.7. (See p. 100.)
- **2.8** Find the node voltages for the circuit shown in Fig. P2.8.

Fig. P2.8

2.9 Find the node voltages for the circuit shown in Fig. P2.9.

Fig. P2.9

Fig. P2.7

2.10 Find the node voltages for the circuit shown in Fig. P2.10.

Fig. P2.10

2.11 Fig. P2.11 shows a single transistor amplifier circuit where the portion in the shaded box is the *hybrid-* or *h-parameter model* of a bipolar junction transistor (BJT). Note that h_i is a resistance and h_o is a conductance. Suppose that $h_i = 1 \text{ k}\Omega$, $h_r = 2.5 \times 10^{-4}$, $h_f = 50$, and $h_o = 25 \mu \text{ U}$. (a) Use nodal analysis to find the voltage gain v_2/v_1 of this amplifier. (b) Determine the input resistance v_1/i_1 of this amplifier.

$$\frac{v_2}{v_1} = \frac{-h_f R_L}{h_i + (h_i h_o - h_f h_r) R_L}$$

Fig. P2.11 shows a single transistor amplifier circuit where the portion in the shaded box is the hybrid- or h-parameter model of a BJT. Note that h_i is a resistance and h_o is a conductance. Use the result given in Problem 2.12 to show that the input resistance v_1/v_1 of this amplifier is

$$\frac{v_1}{i_1} = h_i - \frac{h_f h_r}{h_o + 1/R_L}$$

2.14 The circuit shown in Fig. P2.14 is a single BJT amplifier with "feedback." The portion of the circuit in the shaded box is an approximate T-model of a transistor in the common-emitter configuration. (a) Use nodal analysis to find the voltage gain

Fig. P2.11