2.10 Find the node voltages for the circuit shown in Fig. P2.10.

2.12 Find the circuit which is a hybrid- or a hybrid- between a resistive amplifier is

\[\frac{v_2}{v_1} \]

2.13 Find the circuit which is a resistive amplifier is given in Fig. P2.10.
Find the mesh currents for the circuit shown in Fig. P2.19.

Assume clockwise mesh currents for the circuit shown in Fig. 2.9 on p. 6. Use mesh analysis to find these mesh currents.

Assume clockwise mesh currents for the circuit shown in Fig. P2.7. Use mesh analysis to find these mesh currents.

Assume clockwise mesh currents for the circuit shown in Fig. P2.9. Use mesh analysis to find these mesh currents.

Assume clockwise mesh currents for the circuit shown in Fig. P2.10. Use mesh analysis to find these mesh currents.

Use mesh analysis to find the conductance $G = iv$ for the circuit given in Fig. P2.18.

Assume clockwise mesh currents for the circuit shown in Fig. P2.8. Use mesh analysis to find these mesh currents.
2.26 Assume clockwise mesh currents for the circuit shown in Fig. P2.26 (below). Use mesh analysis to find these mesh currents.

2.27 For the circuit shown in Fig. P2.27, find v_o when the ideal amplifier (a) is an op amp, and (b) has finite gain A.

![Fig. P2.27](image)

2.28 For the op-amp circuit shown in Fig. P2.28, find (a) v_o, and (b) i_o.

![Fig. P2.28](image)

2.29 For the op-amp circuit shown in Fig. P2.29, find (a) v_o, and (b) i_o.

![Fig. P2.29](image)

2.30 The op-amp circuit shown in Fig. P2.30 is known as a negative-impedance converter. For this circuit, find (a) v_o, and (b) the resistance v_o/i_o.

![Fig. P2.30](image)

2.31 For the op-amp circuit shown in Fig. P2.31, find (a) v_o, and (b) the resistance v_o/i_o. (See p. 104.)

2.32 For the op-amp circuit shown in Fig. P2.32, interchange the 1-Ω and 2-Ω resistors, and find (a) v_o, and (b) the resistance v_o/i_o. (See p. 104.)