Problems

3.1 For the circuit shown in Fig. P3.1*a*, suppose that i(t) is described by the function given in Fig. P3.1*b*. Sketch (a) v(t), (b) $w_L(t)$, (c) $p_R(t)$, (d) $v_R(t)$, and (e) $v_s(t)$.

Fig. P3.1

3.2 For the circuit shown in Fig. P3.1*a*, suppose that i(t) is described by the function given in Fig. P3.2. Sketch (a) $v_L(t)$, (b) $w_L(t)$, (c) $p_R(t)$, (d) $v_R(t)$, and (e) $v_s(t)$.

3.3 For the circuit shown in Fig. P3.3, suppose that i(t) is described by the function given in Fig. P3.1b. Sketch (a) v(t), (b) $w_L(t)$, (c) $p_R(t)$, (d) $i_R(t)$, and (e) $i_s(t)$.

3.4 For the circuit shown in Fig. P3.3, suppose that i(t) is described by the function given in Fig. P3.2. Sketch (a) v(t), (b) $w_L(t)$, (c) $p_R(t)$, (d) $i_R(t)$, and (e) $i_s(t)$.

3.5 For the circuit shown in Fig. P3.5, suppose that i(t) is described by the function given in Fig. P3.1b. Sketch (a) $v_R(t)$, (b) $v_L(t)$, and (c) v(t).

3.6 For the circuit shown in Fig. P3.5, suppose that i(t) is described by the function given in Fig. P3.2. Sketch (a) $v_R(t)$, (b) $v_L(t)$, and (c) v(t).

3.7 For the circuit shown in Fig. P3.7*a*, suppose that v(t) is described by the function given in Fig. P3.7*b*. Sketch (a) i(t), (b) $w_C(t)$, (c) $p_R(t)$, (d) $v_R(t)$. and (e) $v_s(t)$.

3.8 For the circuit shown in Fig. P3.8, suppose that v(t) is described by the function given in Fig. P3.7b.

(a) Fig. P3.5

Fig. P3.7

Fig. P3.27

3.29 For the circuit shown in Fig. P3.28, replace the capacitor with a 5-H inductor. For the resulting circuit, the switch opens at time t = 0 s. Write a differential equation in i(t) for $t \ge 0$ s. Find i(t) and v(t) for all time and sketch these functions.

3.30 For the circuit shown in Fig. P3.30, suppose that $i_s(t) = 10$ A for t < 0 s and $i_s(t) = 0$ A for $t \ge 0$ s. Write a differential equation in i(t) for $t \ge 0$ s. Find i(t) and v(t) for all time and sketch these functions.

3.31 For the circuit shown in Fig. P3.30, replace the inductor with a 0.1-F capacitor. Suppose that $i_s(t) = 10$ A for t < 0 s and $i_s(t) = 0$ A for $t \ge 0$ s. Write a differential equation in v(t) for $t \ge 0$ s. Find v(t) and i(t) for all time and sketch these functions.

3.32 For the circuit shown in Fig. P3.32, suppose that $v_s(t) = 18$ V for t < 0 s and $v_s(t) = 0$ V for $t \ge 0$ s. Write a differential equation in i(t) for $t \ge 0$ s. Find i(t) and v(t) for all time and sketch these functions.

Fig. P3.32

Fig. P3.30

For the circuit shown in Fig. P3.32, replace inductor with a $\frac{1}{9}$ -F capacitor. Suppose that r = 18 V for t < 0 s and $v_s(t) = 0$ V for $t \ge 0$ s. a differential equation in v(t) for $t \ge 0$ s. Find and i(t) for all time and sketch these functions.

For the circuit shown in Fig. P3.34, suppose I = 12 V for t < 0 s and $v_s(t) = 0 V$ for S. Write a differential equation in v(t) for Find v(t) and i(t) for all time and sketch these 12V

For the circuit shown in Fig. P3.34, replace concrete with a 3-H inductor. Suppose that

 $v_s(t) = 12$ V for t < 0 s and $v_s(t) = 0$ V for $t \ge 0$ s. Write a differential equation in i(t) for $t \ge 0$ s. Find i(t) and v(t) for all time and sketch these functions.

3.36 For the circuit shown in Fig. P3.36, the switch opens at time t = 0 s. Write a differential equation in i(t) for $t \ge 0$ s. Find i(t) and v(t) for all time and sketch these functions.

3.37 For the circuit shown in Fig. P3.36, replace the inductor with a $\frac{1}{8}$ -F capacitor. For the resulting circuit, the switch opens at time t = 0 s. Write a differential equation in v(t) for $t \ge 0$ s. Find v(t) and i(t) for all time and sketch these functions.

3.38 For the circuit shown in Fig. P3.38, the switch opens at time t = 0 s. Find $v_1(t)$, $v_2(t)$, $i_1(t)$, $i_2(t)$, and v(t) for all time.

3.39 For the circuit shown in Fig. P3.38, changethe value of the 2- Ω resistor to 1 Ω . The switch in the circuit opens at time t = 0 s. Find $v_1(t)$, $v_2(t)$, $i_1(t)$, $i_2(t)$, and v(t) for all time.

