5.70 For the series *RL* circuit shown in Fig. P5.69, suppose that $R = 2 \Omega$ and L = 2 H. Find i(t) and v(t) when $v_s(t) = 12e^{-2t}u(t)$ V.

5.71 For the series *RL* circuit shown in Fig. P5.69, suppose that $R = 2 \Omega$ and L = 2 H. Find i(t) and v(t) when $v_s(t) = 12e^{-t}u(t)$ V.

5.72 Find the step responses v(t) and i(t) for the circuit shown in Fig. P5.72 when $v_s(t) = 12u(t)$ V.

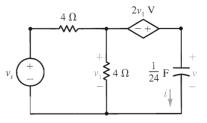


Fig. P5.72

5.73 For the circuit shown in Fig. P5.72, replace the capacitor with a 3-H inductor, and find the step responses v(t) and i(t) when $v_s(t) = 20u(t)$ V.

5.74 For the op-amp circuit shown in Fig. P5.3, suppose that $R = 2 \Omega$ and $C = \frac{1}{8}$ F. Find the step response $v_2(t)$ when $v_1(t) = 3u(t)$ V.

5.75 For the op-amp circuit shown in Fig. P5.3, suppose that $R = 2 \Omega$ and $C = \frac{1}{8}$ F. Find $v_2(t)$ when $v_1(t) = 3e^{-2t}u(t)$ V.

5.76 For the op-amp circuit shown in Fig. P5.3, suppose that $R = 2 \Omega$ and $C = \frac{1}{8}$ F. Find $v_2(t)$ when $v_1(t) = 3e^{-4t}u(t)$ V.

5.77 For the op-amp circuit shown in Fig. P5.8, suppose that $R = 2 \Omega$ and $C = \frac{1}{8}$ F. Find the step response $v_2(t)$ when $v_1(t) = 3u(t)$ V.

5.78 For the op-amp circuit shown in Fig. P5.8, suppose that $R = 2 \Omega$ and $C = \frac{1}{8}$ F. Find $v_2(t)$ when $v_1(t) = 3e^{-2t}u(t)$ V.

5.79 For the op-amp circuit shown in Fig. P5.8, suppose that $R = 2 \Omega$ and $C = \frac{1}{8}$ F. Find $v_2(t)$ when $v_1(t) = 3e^{-4t}u(t)$ V.

5.80 For the series *RLC* circuit shown in Fig. P5.80, suppose that $R = \frac{1}{3} \Omega$, $L = \frac{1}{12}$ H, C = 3 F,

and $v_s(t) = 0$ V. Find v(t) and i(t) when i(0) = 4 and v(0) = 0 V.

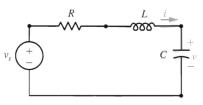


Fig. P5.80

5.81 For the series *RLC* circuit shown in F P5.80, suppose that $R = \frac{1}{3} \Omega$, $L = \frac{1}{12}$ H, $C = \frac{3}{5}$ F, and $v_s(t) = 0$ V. Find v(t) and i(t) when i(0) = 4 A and v(0) = 0 V.

5.82 For the series *RLC* circuit shown in F P5.80, suppose that $R = \frac{1}{3} \Omega$, $L = \frac{1}{12}$ H, C = 4 F and $v_s(t) = 0$ V. Find v(t) and i(t) when i(0) = 4and v(0) = 0 V.

5.83 For the parallel *RLC* circuit shown in P P5.83, suppose that $R = \frac{1}{2} \Omega$, $L = \frac{1}{4}$ H, $C = \frac{1}{2}$ F, $i_s(t) = 0$ A. Find v(t) and i(t) when i(0) = 6 A v(0) = 0 V.

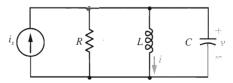
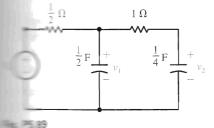


Fig. P5.83


5.84 For the parallel *RLC* circuit shown in F P5.83, suppose that $R = \frac{1}{3} \Omega$, $L = \frac{1}{4}$ H, $C = \frac{1}{2}$ F. $i_s(t) = 0$ A. Find v(t) and i(t) when i(0) = 6 A and v(0) = 0 V.

5.85 For the parallel *RLC* circuit shown in **F** P5.83, suppose that $R = \frac{1}{3} \Omega$, $L = \frac{2}{9}$ H, $C = \frac{1}{2}$ F, and $i_s(t) = 0$ A. Find v(t) and i(t) when i(0) = 6 A and v(0) = 0 V.

5.86 For the series *RLC* circuit shown in F P5.80, suppose that $R = 7 \Omega$, L = 1 H, $C = \emptyset$.1 F and $v_s(t) = 0$ V. Find i(t) and v(t) when v(0) = 1V and i(0) = 0 A. For the series *RLC* circuit shown in Fig. approve that $R = 2 \Omega$, $L = \frac{1}{4}$ H, C = 0.2 F, P = 0 V. Find i(t) and v(t) when v(0) = 10P = 0 A.

For the series *RLC* circuit shown in Fig. **EXAMPLE** 1 H, C = 1 F, 0 = 0 V. Find i(t) and v(t) when v(0) = 6 V 0 = 0 A.

For the circuit shown in Fig. P5.89, find $v_2(t) = 0$ V and $v_1(0) = v_2(0) = 6$ V.

For the circuit shown in Fig. P5.90, find v(t) = 0 V, v(0) = 3 V, and i(0) = 3 A.

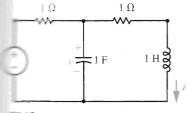
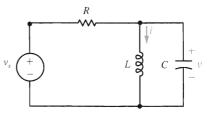


Fig. 25.90


For the circuit shown in Fig. P5.90, interthe inductor and the capacitor. Find the cavoltage v(t) and the inductor current i(t) when v(t) = 0 V. v(0) = 0 V and i(0) = 6 A.

For the parallel *RLC* circuit shown in Fig. suppose that $R = \frac{1}{2} \Omega$, $L = \frac{1}{5}$ H, and $C = \frac{1}{4}$ F. Suppose the step responses v(t) and i(t) when $i_s(t) = 0$

For the parallel *RLC* circuit shown in Fig. suppose that $R = 3 \Omega$, L = 3 H, and $C = \frac{1}{12}$ find the step responses v(t) and i(t) when $i_s(t) = 0$ A. **5.94** For the series *RLC* circuit shown in Fig. P5.80, suppose that $R = 7 \Omega$, L = 1 H, and C = 0.1 F. Find the step responses v(t) and i(t) when $v_s(t) = 12u(t)$ V.

5.95 For the series *RLC* circuit shown in Fig. P5.80, suppose that $R = 2 \Omega$, L = 1 H, and C = 1 F. Find the step responses v(t) and i(t) when $v_s(t) = 12u(t)$ V.

5.96 For the *RLC* circuit shown in Fig. P5.96, suppose that $R = \frac{1}{2} \Omega$, $L = \frac{1}{3}$ H, and $C = \frac{1}{4}$ F. Find the unit step responses v(t) and i(t) when $v_s(t) = u(t)$ V.

5.97 For the *RLC* circuit shown in Fig. P5.96, suppose that $R = \frac{1}{2} \Omega$, $L = \frac{1}{4}$ H, and $C = \frac{1}{2}$ F. Find the unit step responses v(t) and i(t) when $v_s(t) = u(t)$ V.

5.98 For the circuit shown in Fig. P5.89, find the step response $v_2(t)$ when $v_s(t) = 9u(t)$ V.

5.99 For the circuit shown in Fig. P5.90, find the step response v(t) when $v_s(t) = 6u(t)$ V.

5.100 For the op-amp circuit shown in Fig. P5.48, suppose that $C = \frac{1}{3}$ F. Find the step response $v_2(t)$ when $v_1(t) = 4u(t)$ V.

5.101 For the op-amp circuit shown in Fig. P5.48, suppose that $C = \frac{1}{8}$ F. Find the step response $v_2(t)$ when $v_1(t) = 8u(t)$ V.

5.102 For the op-amp circuit shown in Fig. P5.48, suppose that $C = \frac{1}{4}$ F. Find the step response $v_2(t)$ when $v_1(t) = 6u(t)$ V.

5.103 For the op-amp circuit shown in Fig. P5.49, suppose that C = 1 F. Find the step response $v_2(t)$ when $v_1(t) = 3u(t)$ V.

5.104 For the op-amp circuit shown in Fig. P5.49, suppose that $C = \frac{4}{3}$ F. Find the step response $v_2(t)$ when $v_1(t) = 4u(t)$ V.

5.105 For the op-amp circuit shown in Fig. P5.49, suppose that $C = \frac{1}{5}$ F. Find the step response $v_2(t)$ when $v_1(t) = 2u(t)$ V.

5.106 For the parallel *RLC* circuit shown in Fig. P5.83, suppose that $R = 6 \Omega$, L = 7 H, and $C = \frac{1}{42}$ F. Find v(t) and i(t) when $i_s(t) = 6u(t)$ A, i(0) = -4 A, and v(0) = 0 V.

5.107 For the series *RLC* circuit shown in Fig. P5.80, suppose that $R = 2 \Omega$, $L = \frac{1}{4}$ H, and $C = \frac{1}{5}$ F. Find i(t) and v(t) when $v_s(t) = 2u(t)$ V, i(0) = 0 A, and v(0) = -2 V.

5.108 For the *RLC* circuit shown in Fig. P5.96, suppose that $R = 3 \Omega$, L = 4 H, and $C = \frac{1}{12}$ F. Find v(t) and i(t) when $v_s(t) = -12u(t)$ V, i(0) = 4 A, and v(0) = 0 V.

5.109 Given that the transfer function of a linear system is $\mathbf{H}(s) = 1/(s+2)$, find the output y(t) when

the input x(t) is (a) u(t), (b) $e^{-t}u(t)$, (c) $(1 - e^{-t})u(t)$ and (d) $e^{-2t}u(t)$.

5.110 Given that the transfer function of a linear system is $\mathbf{H}(s) = s/(s+2)$, find the output y(t) where the input x(t) is (a) u(t), (b) $e^{-t}u(t)$, (c) $(1 - e^{-t})u(t)$ and (d) $e^{-2t}u(t)$.

5.111 Given that the transfer function of a line system is $\mathbf{H}(s) = (s - 1)/(s + 10)$, find the input x(t) when the output y(t) is (a) $(-1 + 2e^{-t})u(t)$, (b) $(-2e^{-t} + 3e^{-2t})u(t)$, (c) $(1 - 11t)e^{-10t}u(t)$, and (d) $(1 - 2t)e^{-t}u(t)$.

5.112 For the case that the input to a linear system is $x(t) = e^{-t}u(t)$, find the transfer function **H**(a) when the output y(t) is (a) $e^{-2t}u(t)$, (b) sin t u(t). (c) $e^{-t} \sin t u(t)$, (d) $te^{-t}u(t)$, and (e) $(e^{-t} - e^{-2t})u(t)$.

5.113 For the case that the input to a linear system is $x(t) = \cos t u(t)$, find the transfer function **H** when the output y(t) is (a) $e^{-2t}u(t)$, (b) sin t u(t), (c) $e^{-t} \sin t u(t)$, (d) $te^{-t}u(t)$, and (e) $(e^{-t} - e^{-2t})u(t)$.