Circuits

184

3.63 For the series *RLC* circuit shown in Fig.

Fig. P3.63

3.64 For the series *RLC* circuit shown in Fig.

 $t \ge 0$ s. Find v(t) and i(t) for all time. **3.65** For the series *RLC* circuit shown in Fig. P3.63, suppose that $R = 2 \Omega$, L = 1 H, C = 1 F, $v_s(t) = 6$ V for t < 0 s and $v_s(t) = 0$ V for $t \ge 0$ s.

P3.63, suppose that $R = 2 \Omega$, L = 0.25 H, C = 0.2 F, $v_s(t) = 10$ V for t < 0 s and $v_s(t) = 0$ V for

Find v(t) and i(t) for all time. **3.66** For the circuit shown in Fig. P3.66, suppose that $v_s(t) = 6$ V for t < 0 s and $v_s(t) = 0$ V for

 $t \ge 0$ s. Find $v_2(t)$ and $v_1(t)$ for all time.

3.67 For the circuit shown in Fig. P3.67, suppose that $v_s(t) = 6$ V for t < 0 s and $v_s(t) = 0$ V for $t \ge 0$ s. Find i(t) and v(t) for all time.

1Ω 1Ω 1H 8 1H 8 Fig. P3.67

3.68 For the circuit shown in Fig. P3.67, interchange the inductor and the capacitor. Suppose that

rent i(t) for all time.

3.69 For the parallel RLC circuit shown in Fig. P3.69, suppose that $R = 0.5 \Omega$, L = 0.2 H, C = 0.25 F, and $i_s(t) = 2u(t) \text{ A}$. Find the step responses i(t) and v(t).

 $v_s(t) = 6$ V for t < 0 s and $v_s(t) = 0$ V for $t \ge 0$ s. Find the capacitor voltage v(t) and the inductor cur-

ose 1, (

v(t).

Fig. P3.69

3.70 For the parallel *RLC* circuit shown in Fig. P3.69, suppose that $R = 3 \Omega$, L = 3 H, $C = \frac{1}{12} F$, and $i_s(t) = 4u(t) A$. Find the step responses i(t) and

3.71 For the series *RLC* circuit shown in Fig. P3.63, suppose that $R = 7 \Omega$, L = 1 H, C = 0.1 F

and $v_s(t) = 12u(t)$ V. Find the step responses v(t) and i(t). 8 V for **3.72** For the series *RLC* circuit shown in Fig. P3.63, suppose that $R = 2 \Omega$, L = 1 H, C = 1 F.

3.78 Find the step response $v_o(t)$ for the op-amp circuit shown in Fig. P3.77 when $C = \frac{1}{6}$ F and

3.73 For the *RLC* circuit shown in Fig. 3.43 on p. 172. suppose that
$$R = \frac{1}{2} \Omega$$
, $L = \frac{1}{3} H$, $C = \frac{1}{4} F$, and $V = 1 V$. Find the unit step responses $i(t)$ and $v(t)$.

AT).

and $v_s(t) = 12u(t)$ V. Find the step responses v(t) and

$$V = 1$$
 V. Find the unit step responses $i(t)$ and $v(t)$.
3.74 For the *RLC* circuit shown in Fig. 3.43 on p.

172. suppose that
$$R = \frac{1}{2} \Omega$$
, $L = \frac{1}{4} H$, $C = \frac{1}{2} F$, and V . Find the unit step responses $i(t)$ and $v(t)$.

5 For the circuit shown in Fig. P3.66, suppose
$$v_s(t) = 9u(t)$$
 V. Find the step response $v_2(t)$.

3 76 For the circuit shown in Fig. P3.67, suppose
$$v_s(t) = 6u(t)$$
 V. Find the step responses $i(t)$ and

For the circuit shown in Fig. P3.07, suppose
$$v_{r}(t) = 6u(t)$$
 V. Find the step responses $i(t)$ and Find the step response $v_{o}(t)$ for the op-amp

uit shown in Fig. P3.77 when
$$C = \frac{1}{3}$$
 F and $V_s(t)$

$$= 4u(t) \text{ V}.$$

3.79 Find the step response
$$v_o(t)$$
 for the op-amp circuit shown in Fig. P3.77 when $C = \frac{1}{4}$ F and $v_o(t) = 6u(t)$ V.

3.81

3.82

 $v_s(t) = 2u(t) V$.

 $v_c(t) = 8u(t) V$.

3.80 Find the step response
$$v_o(t)$$
 for the op-amp circuit shown in Fig. P3.80 when $C = \frac{4}{3}$ F and $v_s(t) = 4u(t)$ V.

3.81 Find the step response
$$v_o(t)$$
 for the op-amp circuit shown in Fig. P3.80 when $C = 1$ F and $v_s(t) = 3u(t)$ V.

3.82 Find the step response $v_o(t)$ for the op-amp circuit shown in Fig. P3.80 when $C = \frac{1}{5}$ F and

