


Fig. P1.26 a-d

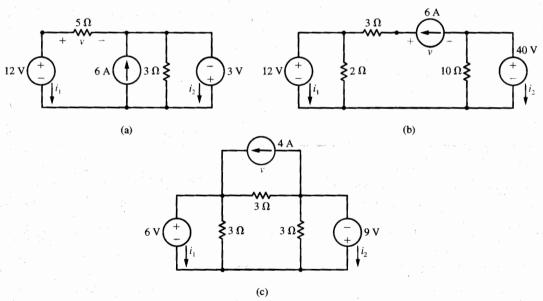



Fig. P1.27 a-c

- **1.30** Find  $\nu$  and i for the series-parallel circuit shown in Fig. P1.30.
- **1.31** Find v and i for the series-parallel circuit shown in Fig. P1.31.
- **1.32** Consider the circuit shown in Fig. P1.32. (a) Find i,  $v_1$ ,  $v_2$ , and  $v_3$ . (b) Remove the short circuit
- between a and b (erase it), and find i,  $v_1$ , and  $v_2$ . (Don't try to find  $v_3$ —it can't be done!)
- **1.33** Consider the series-parallel circuit shown in Fig. P1.33. (a) Find  $V_s$  when  $v_1 = 2$  V. (b) Find  $V_s$  when  $i_3 = 3$  A. (c) Find  $V_s$  when  $i_5 = 4$  A. (d) What is the resistance  $R_{eq} = V_s/i$  loading the battery for part (a)? For part (b)? For part (c)?

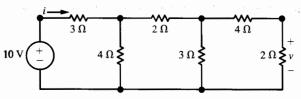



Fig. P1.30

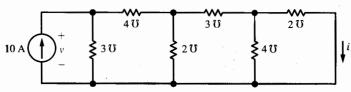



Fig. P1.31

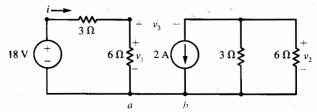



Fig. P1.32

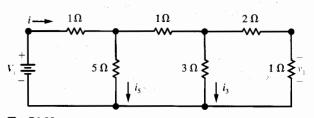



Fig. P1.33

- **1.34** Consider the nonseries-parallel circuit shown in Fig. P1.34. (a) When  $R = \frac{1}{2} \Omega$ , then  $v_1 = 6$  V. Determine the resistance  $R_{eq} = V_s/i$  loading the battery.
- **1.35** Consider the nonseries-parallel circuit shown in Fig. P1.34. When  $R = 4 \Omega$ , then  $v_1 = 4 \text{ V}$ . Demine the resistance  $R_{\text{eq}} = V_s/i$  loading the battery.
  - **36** Consider the nonseries-parallel circuit shown Fig. P1.34. Determine R and the resistance  $R_{\rm eq} = /i$  loading the battery when  $v_1 = 3$  V.

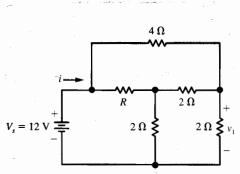



Fig. P1.34

- **1.37** The nonseries-parallel circuit shown in Fig. P1.37 is known as a **twin-T network**. (a) When  $R_1 = 1 \Omega$  and  $R_2 = 3 \Omega$ , then  $v_2 = 6$  V. Determine the resistance  $R_{eq} = V_s/i$  loading the battery.
- **1.38** For the twin-T network shown in Fig. P1.37, suppose that  $R_2 = \frac{3}{4} \Omega$  and  $v_2 = 3$  V. Determine  $R_1$  and the resistance  $R_{\rm eq} = V_s/i$  loading the battery.
- **1.39** Shown in Fig. P1.39 is a nonseries-parallel connection known as a **bridge circuit**. When  $R_1 = 10 \Omega$  and  $R_2 = 1 \Omega$ , then  $v_1 = 10 \text{ V}$ . Find  $v_2$ , i,  $v_3$ , and the resistance  $R_{\text{eq}} = V_s/i_s$  loading the voltage source.
- **1.40** For the bridge circuit shown in Fig. P1.39, when  $R_1 = 2 \Omega$  and  $R_2 = 4 \Omega$ , then  $v_1 = 4 \text{ V}$ . Find  $v_2$ , i,  $v_3$ , and the resistance  $R_{\text{eq}} = V_s I i_s$  loading the voltage source.
- **1.41** For the bridge circuit shown in Fig. P1.39, when the current i = 0 A, we say that the bridge

- is **balanced**. Under what condition (find an expression relating  $R_1$  and  $R_2$ ) will this bridge be balanced?
- **1.42** For the circuit shown in Fig. P1.42, find  $i_1$  when (a) K = 2, (b) K = 3, and (c) K = 4.

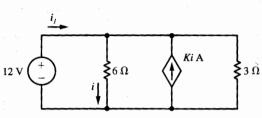



Fig. P1.42

**1.43** The circuit shown in Fig. P1.43 contains a **voltage-dependent voltage source** as well as a current-dependent current source. Find  $i_1$  when (a) K = -3, (b) K = -1.5, and (c) K = 1.5.

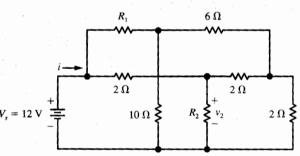



Fig. P1.37

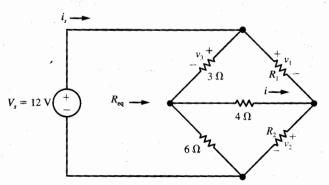



Fig. P1.39

- **1.44** Consider the circuit shown in Fig. P1.44. Find  $\nu$  when (a) K = 2, and (b) K = 4.
- **1.45** Consider the circuit shown in Fig. P1.45. Find i when (a) K = 2, and (b) K = 4.
- **1.46** Consider the circuit shown in Fig. P1.46. (a) Find the resistance  $R_{eq} = v_1/i_1$ . (b) Find the voltage  $v_2$  in terms of the applied voltage  $v_1$ .

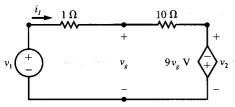



Fig. P1.46

**1.47** Consider the circuit shown in Fig. P1.47. (a) Find the resistance  $R_{\rm eq} = \nu_1/i_1$ . (b) Use voltage division to find  $\nu$  in terms of  $\nu_g$ . (c) Find the voltage  $\nu_2$  in terms of the applied voltage  $\nu_1$ .

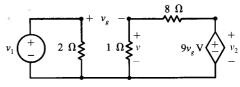



Fig. P1.47

**1.48** For the circuit shown in Fig. P1.48, suppose that  $R = 10 \Omega$ . Determine (a)  $v_s$ , and (b)  $R_{eq} = v_s/i_s$ .

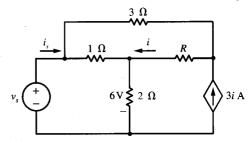



Fig. P1.48

**1.49** For the circuit shown in Fig. P1.48, suppose that  $R = 8 \Omega$ . Determine (a)  $v_s$ , and (b)  $R_{eq} = v_s/i_s$ .

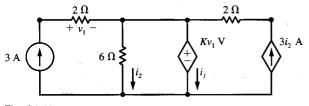



Fig. P1.43

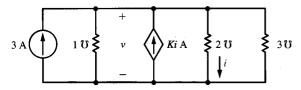



Fig. P1.44

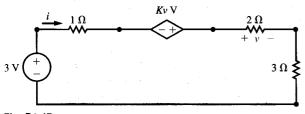



Fig. P1.45

**1.50** For the circuit shown in Fig. P1.50, suppose that  $R = 5 \Omega$ . Determine (a)  $i_s$ , and (b)  $R = v_s/i_s$ .

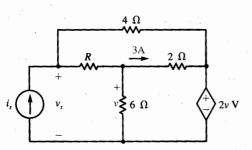



Fig. P1.50

- **1.51** For the circuit shown in Fig. P1.50, suppose that  $R = 3 \Omega$ . Determine (a)  $i_s$ , and (b)  $R_{eq} = v_s/i_s$ .
- **1.52** The circuit shown in Fig. P1.52 is a single field-effect transistor (FET) amplifier in which the input is  $v_1$  and the output is  $v_2$ . The portion of the circuit in the shaded box is an approximate model of an FET. (a) Find  $v_{gs}$  in terms of  $v_1$ . (b) Find  $v_2$  in terms of  $v_1$ . (c) Find  $v_2$  when  $v_1 = 0.1 \cos 120\pi t$  V.

- **1.53** The circuit shown in Fig. P1.53 is a single bipolar junction transistor (BJT) amplifier in which the input is  $v_1$  and the output is  $v_2$ . The portion of the circuit in the shaded box is an approximate model of a BJT in the common-emitter configuration. (a) Find  $i_b$  in terms of the input voltage  $v_1$ . (b) Find the output voltage  $v_2$  in terms of  $v_1$ . (c) Find  $v_2$  when  $v_1 = 0.1 \cos 120\pi t$  V.
- **1.54** The circuit shown in Fig. P1.54 is another single bipolar junction transistor (BJT) amplifier in which the input is  $v_1$  and the output is  $v_2$ . The portion in the shaded box is an approximate model of a BJT in the common-base configuration. (a) Find  $i_e$  in terms of the input voltage  $v_1$ . (b) Find the output voltage  $v_2$  in terms of  $v_1$ . (c) Find  $v_1$  when  $v_1 = 0.1 \cos 120\pi t$  V.
- **1.55** For the circuit given in Fig. 1.51 on p. 34, v = 12 V,  $i_1 = 4 \text{ A}$ , and  $i_2 = 6 \text{ A}$ . Determine the power absorbed by each element in the circuit.
- **1.56** For the circuit given in Fig. 1.52 on p. 36, v = 24 V. Determine the power absorbed by each element in the circuit.

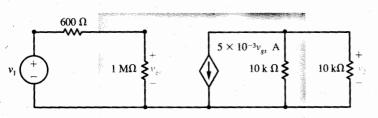
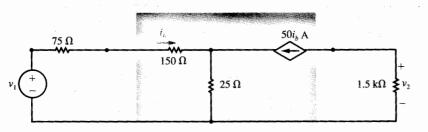




Fig. P1.52



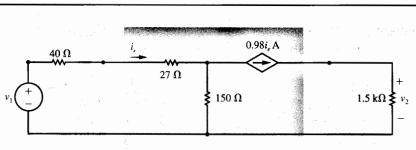



Fig. P1.54

- **1.57** For the circuit given in Fig. 1.53 on p. 37, i = 24 A. Determine the power absorbed by each element in the circuit.
- **1.58** For the circuit given in Fig. P1.42, determine the power absorbed by each element when (a) K = 2, and (b) K = -2.
- **1.59** For the circuit shown in Fig. P1.44, determine the power absorbed by each element given that (a) K = 2 and v = 1.5 V; (b) K = 4 and v = -1.5 V.
- **1.60** For the circuit shown in Fig. P1.45, determine the power absorbed by each element given that (a) K = 2 and i = 1.5 A; (b) K = 4 and i = -1.5 A.