104

 3Ω

2.33 For the op-amp circuit shown in Fig. P2.33, find (a) v_o , and (b) the resistance v_s/i_s . **2.34** For the op-amp circuit shown in Fig. P2.34,

find (a) v_b , and (b) the resistance v_s/i_s . (See p. 105.)

2.35 For the op-amp circuit shown in Fig. P2.35, find v_o . R_1 R_1 R_2 R_2

2.36 For the op-amp circuit shown in Fig. P2.36, find v_o . (See p. 105.)

2.37 Consider the circuit shown in Fig. P2.37. (a)

Find the Thévenin equivalent of the circuit to the left of terminals a and b. (b) Use the Thévenin-equivalent

circuit to find the power absorbed by $R_L = 2 \Omega$. (c)

Determine the value of R_L , which absorbs the maxi-

Fig. P2.37

2.38 For the circuit shown in Fig. P2.37, connect

a $12-\Omega$ resistor between terminal a and the positive terminal of the voltage source. (a) Find the Thévenin equivalent of the resulting circuit to the left of ter-

Fig. P2.36

power. (See p. 106.)

minals a and b. (b) Use the Thévenin-equivalent circuit to find the power absorbed by $R_L = 2 \Omega$. (c) Determine the value of R_L which absorbs the maximum amount of power, and find this power.

- **2.39** Consider the circuit shown in Fig. P2.39. (a) Find the Thévenin equivalent of the circuit to the left of terminals a and b. (b) Use the Thévenin-equivalent circuit to find i and the power absorbed by R_L when $R = 6 \Omega$. (c) Determine the value of R_L , which absorbs the maximum amount of power, and find this
- Find the Thévenin equivalent of the circuit to the left of terminals a and b. (b) Use the Thévenin-equivalent circuit to find v and the power absorbed by R_L when $R_L = 3 \Omega$. (c) Determine the value of R_D which

2.40 Consider the circuit shown in Fig. P2.40. (a)

absorbs the maximum amount of power, and find this power. (See p. 106.)

2.41 For the circuit given in Fig. P2.41, determine the value of R_L , which absorbs the maximum amount of power, and find this power when $v_1 = 20$ V.

Fig. P2.41

2.42 Find the Norton equivalent of the circuit to the left of terminals a and b for the circuit shown in Fig. P2.42. Use this result to find i.

Circuits

riy. rz.s:

106

Fig. P2.40

2.43 Find the Norton equivalent of the circuit

-

Fig. P2.43

2.44 Find the Thévenin equivalent of the circuit

Fig. P2.44

shown in Fig. P2.44.