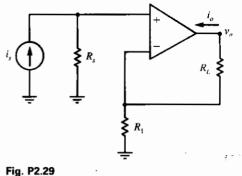
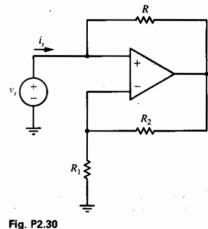

2.26 Assume clockwise mesh currents for the circuit shown in Fig. P2.26 (below). Use mesh analysis find these mesh currents.


2.27 For the circuit shown in Fig. P2.27, find v_0 when the ideal amplifier (a) is an op amp, and (b) as finite gain A.


For the op-amp circuit shown in Fig. P2.28, and (a) v_o , and (b) i_o .

For the op-amp circuit shown in Fig. P2.29, and (a) v_o , and (b) i_o .

The op-amp circuit shown in Fig. P2.30 is known as a negative-impedance converter. For this circuit, find (a) v_o , and (b) the resistance v_s/i_s .

For the op-amp circuit shown in Fig. P2.31, find (a) v_o , and (b) the resistance v_s/i_s . (See p. 104.)

For the op-amp circuit shown in Fig. P2.31, interchange the 1- Ω and 2- Ω resistors, and find (a)

 v_o , and (b) the resistance v_s/i_s . (See p. 104.)

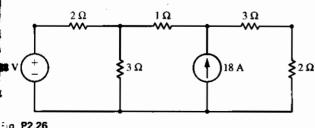
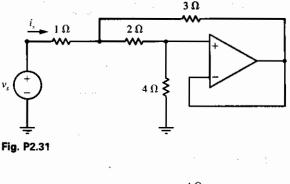
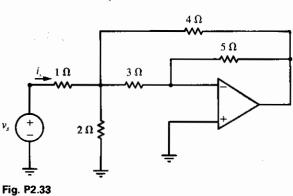




Fig. P2.26

Circuits

104

2.33 For the op-amp circuit shown in Fig. P2.33,

find (a) v_o , and (b) the resistance v_s/i_s . **2.34** For the op-amp circuit shown in Fig. P2.34, find (a) v_o , and (b) the resistance v_s/i_s . (See p. 105.)

For the op-amp circuit shown in Fig. P2.35,

find v_o . $v_a \stackrel{+}{=} v_b \stackrel{+}{=} v_b$ R_1 R_2 R_2 Fig. P2.35

2.36 For the op-amp circuit shown in Fig. P2.36, find v_o . (See p. 105.)

Consider the circuit shown in Fig. P2.37. (a)

Find the Thévenin equivalent of the circuit to the left of terminals a and b. (b) Use the Thévenin-equivalent

circuit to find the power absorbed by $R_L = 2 \Omega$. (c)

Determine the value of R_L , which absorbs the maxi-

Fig. P2.37

2.37

2.38 For the circuit shown in Fig. P2.37, connect a $12-\Omega$ resistor between terminal a and the positive terminal of the voltage source. (a) Find the Thévenin equivalent of the resulting circuit to the left of ter-

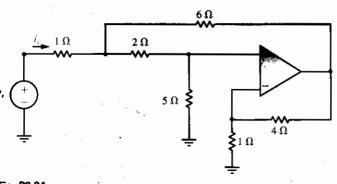
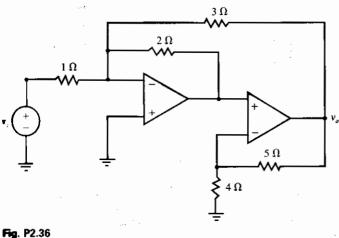



Fig. P2.34

power. (See p. 106.)

cuit to find the power absorbed by $R_L = 2 \Omega$. (c) Determine the value of R_L which absorbs the maximum amount of power, and find this power.

minals a and b. (b) Use the Thévenin-equivalent cir-

Consider the circuit shown in Fig. P2.39. (a) Find the Thévenin equivalent of the circuit to the left

of terminals a and b. (b) Use the Thévenin-equivalent circuit to find i and the power absorbed by R_L when $R = 6 \Omega$. (c) Determine the value of R_L , which

shorts the maximum amount of power, and find this

Consider the circuit shown in Fig. P2.40. (a) the Thévenin equivalent of the circuit to the left minals a and b. (b) Use the Thévenin-equivalent

 $R_{i} = 3 \Omega$. (c) Determine the value of R_{L} which

. to find v and the power absorbed by R_L when

power. (See p. 106.)

For the circuit given in Fig. P2.41, determine the value of R_L , which absorbs the maximum amount of power, and find this power when $v_1 = 20 \text{ V}$.

absorbs the maximum amount of power, and find this

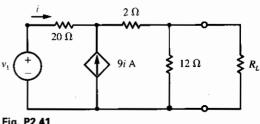


Fig. P2.41

Find the Norton equivalent of the circuit to the left of terminals a and b for the circuit shown in Fig. P2.42. Use this result to find i.