

Fig. P3.16 3.17 For the circuit shown in Fig. P3.17, suppose

that v(t) is described by the function given in Fig. P3.16. Sketch (a) $i_L(t)$, (b) $i_R(t)$, and (c) $i_s(t)$.

2Ω 2 H $[i_L$ Fig. P3.17

3.18 For the op-amp circuit shown in Fig. P3.18, suppose that v(t) is described by the function given in Fig. P3.16. Sketch (a) $i_R(t)$, (b) $v_C(t)$, and (c) $v_o(t)$.

180

Fig. P3.26

1 F

- **3.29** For the circuit shown in Fig. P3.28, replace the capacitor with a 5-H inductor. For the resulting the inductor with a 0.1-F capacitor. Suppose that circuit, the switch opens at time t = 0 s. Write a differential equation in i(t) for $t \ge 0$ s. Find i(t) and v(t) for all time and sketch these functions.
- **3.30** For the circuit shown in Fig. P3.30, suppose that $i_s(t) = 10$ A for t < 0 s and $i_s(t) = 0$ A for $t \ge 0$ s. Write a differential equation in i(t) for $t \ge 0$ s. Find i(t) and v(t) for all time and sketch these functions.

Fig. P3.30

For the circuit shown in Fig. P3.30, replace

3.32 For the circuit shown in Fig. P3.32, suppose that $v_s(t) = 18 \text{ V for } t < 0 \text{ s and } v_s(t) = 0 \text{ V for}$ $t \ge 0$ s. Write a differential equation in i(t) for $t \ge 0$ s. Find i(t) and v(t) for all time and sketch these functions. 6Ω 3Ω

Fig. P3.32

182

suppose that $i_s(t) = 6u(t)$ A. Find the step responses v(t) and i(t), and sketch these functions.

3.40 For the parallel RC circuit given in Fig. P3.8,

- **3.41** For the parallel RL circuit given in Fig.
- P3.17, find the unit step responses $i_L(t)$ and v(t), and sketch these functions.
- **3.42** For the circuit shown in Fig. P3.42, find the step responses v(t) and i(t), and sketch these functions.

Fig. P3.42

that $i_s(t) = 10u(t)$ A. Use Thévenin's theorem to find the step responses i(t) and v(t), and sketch these functions.

3.43 For the circuit given in Fig. P3.30, suppose

- 3.44 For the circuit given in Fig. P3.30, replace the inductor with a 0.1-F capacitor. Suppose that $i_s(t) =$ 10u(t) A. Use Thévenin's theorem to find the step
- responses v(t) and i(t), and sketch these functions. **3.45** For the circuit given in Fig. P3.34, suppose that $v_s(t) = 12u(t)$ V. Find the step responses v(t) and
- i(t), and sketch these functions. **3.46** For the circuit given in Fig. P3.34, replace the capacitor with a 3-H inductor. Suppose that $(i_s)(t) = 12u(t)$ V. Find the step responses i(t) and v(t),
- Vu(t)(a)

and sketch these functions.

G₹ (b)

RC circuit shown in Fig. P3.47a are given by Eq. 3.19 and Eq. 3.20, respectively. Use duality to determine the step responses $i_I(t)$ and v(t) for the parallel GL circuit shown in Fig. P3.47b.

The step responses $v_C(t)$ and i(t) for the series

3.48 Find the step response $v_o(t)$ for the op-amp circuit shown in Fig. P3.48.

Fig. P3.48

3.49 Find the step responses v(t) and $v_o(t)$ for the op-amp circuit shown in Fig. P3.49.

Fig. P3.47

183

rig. **rs.su**

reuit shown in Fig. P3.50.

51 For the series *RC* circuit given in Fig. P3.7a, spose that $v_s(t) = 12e^{-t/2}u(t)$ V. Find the responses

3.50 Find the step response $v_o(t)$ for the op-amp

spose that $v_s(t) = 12e^{-tt}u(t)$ V. Find the responsition and i(t).

52 For the series *RC* circuit given in Fig. P3.7a, spose that $v_s(t) = 12e^{-t/4}u(t)$ V. Find the responses v_s and i(t).

53 For the series *RL* circuit given in Fig. P3.1*a*, spose that $v_s(t) = 12e^{-2t}u(t)$ V. Find the responses and v(t).

54 For the series *RL* circuit given in Fig. P3.1*a*, spose that $v_s(t) = 12e^{-t}u(t)$ V. Find the responses and v(t).

55 For the circuit shown in Fig. P3.30, when $i_{t}(t) = 10u(t)$ A, then $i(t) = 4(1 - e^{-t})u(t)$ A and

 $\mathbf{v}(t) = 20e^{-t}u(t) \text{ V. Find } i(t) \text{ and } v(t) \text{ when } i_s(t) = \frac{s}{2}v(t) - 5u(t-1) \text{ A.}$

56 For the circuit shown in Fig. P3.34, when v = 12u(t) V, then $v(t) = 18(1 - e^{-4t})u(t)$ V and $v = 3e^{-4t}u(t)$ A. Find v(t) and v(t) when $v(t) = 18(1 - e^{-4t})u(t)$

4u(t) - 4u(t-2) V.

3.57 For the circuit shown in Fig. P3.57, the switch opens at time
$$t = 0$$
 s. Find $v(t)$ and $i(t)$ for all time.

3.58 For the circuit shown in Fig. P3.57, change the value of the capacitor to $\frac{3}{5}$ F. For the resulting circuit, the switch opens at time t = 0 s. Find v(t)

and i(t) for all time.

3.59 For the circuit shown in Fig. P3.57, change the value of the capacitor to 3 F. For the resulting circuit, the switch opens at time t = 0 s. Find v(t) and i(t) for all time.

3.60 For the circuit shown in Fig. P3.60, the switch opens at time t = 0 s. Find i(t) and v(t) for all time. (See p. 184.) **3.61** For the circuit shown in Fig. P3.60, change

the value of the resistor to $\frac{1}{2}$ Ω . For the resulting

circuit, the switch opens at time t = 0 s. Find i(t) and v(t) for all time. (See p. 184.) **3.62** For the circuit shown in Fig. P3.60, change the value of the inductor to $\frac{2}{6}$ H. For the resulting

the value of the inductor to $\frac{2}{9}$ H. For the resulting circuit, the switch opens at time t = 0 s. Find v(t) and i(t) for all time. (See p. 184.)