

Fig. P4.23

 $4.47/-63.4^{\circ}$ V and $\mathbf{Z}_o = 1.6 + j4.8 \ \Omega$. (a) Replace the $4-\Omega$ load resistor by an impedance \mathbf{Z}_L that absorbs the maximum average power, and determine this maximum power. (b) Replace the $4-\Omega$ load resistor with a resistance R_L that absorbs the maximum

4.28 For the *RLC* circuit shown in Fig. P4.28, suppose that $v_s(t) = 10 \cos 3t$ V. Find the average power absorbed by the 4- Ω resistor for the case that (a) $C = \frac{1}{6}$ F; (b) $C = \frac{1}{18}$ F; (c) $C = \frac{1}{30}$ F.

power for resistive loads, and determine this power.

Fig. P4.28

4.29 For the circuit shown in Fig. P4.29, suppose that $v_s(t) = 8 \cos 2t$ V. Find the average power absorbed by each element in the circuit for the case that $\mathbf{Z}_L = 1 \ \Omega$.

Fig. P4.29

4.30 For the circuit shown in Fig. P4.29, change the value of the resistor to 2 Ω and the value of the capacitor to $\frac{1}{4}$ F. Suppose that $v_s(t) = 8 \cos 2t$ V. (a) Find the load impedance \mathbf{Z}_L that absorbs the maximum average power, and determine this power. (b) Find the load resistance R_L that absorbs the maximum power for resistive loads, and determine this power.

4.31 For the op-amp circuit given in Fig. P4.21, when $v_s(t) = 6 \sin 2t$ V, then the output voltage $v_o(t) = 13.4 \cos(2t - 117^\circ)$ V. Find the average power absorbed by each element.

4.32 For the op-amp circuit given in Fig. P4.22 when $v_s(t) = 3 \cos 2t$ V, then the output voltage $v_o(t) = 10.6 \cos(2t + 135^\circ)$ V. Find the average power absorbed by each element.

4.33 For the op-amp circuit given in Fig. P4.23 when $v_s(t) = 4 \cos(2t - 30^\circ)$ V, then $v_1(t) = 1.6\cos(2t - 66.9^\circ)$ V and $v_o(t) = 1.6\cos(2t + 23.1^\circ)$ V. Find the average power absorbed by each element

4.34 For the circuit given in Fig. P4.24, when $\mathbf{V}_{s1} = 250\sqrt{2/-30^{\circ}}\,\mathrm{V}$, $\mathbf{V}_{s2} = 250\sqrt{2/-90^{\circ}}\,\mathrm{V}$. $\mathbf{Z} = 78 - j45\,\Omega$, then $\mathbf{I}_{1} = 6.8/30^{\circ}\,\mathrm{A}$ and $\mathbf{I}_{2} = 6.8/-90^{\circ}\,\mathrm{A}$. (a) Find the average power absorbed each impedance. (b) Find the average power supplies by each source.

4.35 For the circuit given in Fig. P4.25, where $V_{s1} = 250\sqrt{2/-30^{\circ}} \text{ V}$, $V_{s2} = 250\sqrt{2/-90^{\circ}} \text{ V}$, $V_{s2} = 260\sqrt{2/-90^{\circ}} \text{ V}$, $V_{s3} = 260\sqrt{2/-90^{\circ}} \text{ A}$, then $V_{s1} = 6.8/30^{\circ} \text{ A}$ and $V_{s2} = 260\sqrt{2/-90^{\circ}} \text{ A}$. (a) Find the average power absorbed each impedance. (b) Find the average power supply each source.