1.21 For the circuit shown in Fig. P1.19, suppose that \(i_2 = -2 \) A. Use the current-divider formula to determine \(i_1 \), \(i_3 \), \(i_4 \), and \(i_5 \).

1.22 For the circuit given in Fig. P1.19, suppose that \(i_5 = 4 \) A. Use the current-divider formula to determine \(i_1 \), \(i_2 \), \(i_3 \), and \(i_4 \).

1.23 For the circuit shown in Fig. P1.23, suppose that \(i_1 = 2 \) A. Find \(v \) for the case that (a) \(i_2 = 1 \) A, (b) \(i_2 = 2 \) A, and (c) \(i_2 = 3 \) A.

1.24 Consider the circuit shown in Fig. P1.23. Find \(v \) when (a) \(i_1 = 12 \) A and \(i_2 = 6 \) A, (b) \(i_1 = 6 \) A and \(i_2 = 6 \) A, (c) \(i_1 = 6 \) A and \(i_2 = 12 \) A.

1.25 Find the variables indicated for the circuits shown in Fig. P1.25.

1.26 Find the variables indicated for the circuits shown in Fig. P1.26. (See p. 48.)

1.27 Find the variables indicated for the circuits shown in Fig. P1.27. (See p. 48.)

1.28 For the circuit shown in Fig. P1.28, find the variables indicated when \(R \) is (a) \(2 \) \(\Omega \), (b) \(4 \) \(\Omega \), and (c) \(6 \) \(\Omega \).

1.29 For the circuit shown in Fig. P1.29, find the variables indicated when \(R \) is (a) \(2 \) \(\Omega \), (b) \(4 \) \(\Omega \), and (c) \(6 \) \(\Omega \).
1.30 Find v and i for the series-parallel circuit shown in Fig. P1.30.

1.31 Find v and i for the series-parallel circuit shown in Fig. P1.31.

1.32 Consider the circuit shown in Fig. P1.32. (a) Find i, v_1, v_2, and v_3. (b) Remove the short circuit between a and b (erase it), and find i, v_1, and v_2. (Don’t try to find v_3—it can’t be done!)

1.33 Consider the series-parallel circuit shown in Fig. P1.33. (a) Find V_1 when $v_1 = 2$ V. (b) Find V_1 when $i_2 = 3$ A. (c) Find V_2 when $i_4 = 4$ A. (d) What is the resistance $R_{eq} = V_2/i$? Is it the resistance for part (a)? For part (b)? For part (c)?