

Fig. P1.26 a-d

Fig. P1.27 a-c

1.30 Find v and i for the series-parallel circuit shown in Fig. P1.30.

1.31 Find v and i for the series-parallel circuit shown in Fig. P1.31.

1.32 Consider the circuit shown in Fig. P1.32. (a) Find i, v_1 , v_2 , and v_3 . (b) Remove the short circuit

between a and b (erase it), and find i, v_1 , and v_2 . (Don't try to find v_3 —it can't be done!)

1.33 Consider the series-parallel circuit shown in Fig. P1.33. (a) Find V_s when $v_1 = 2$ V. (b) Find V_s when $i_3 = 3$ A. (c) Find V_s when $i_5 = 4$ A. (d) What is the resistance $R_{eq} = V_s/i$ loading the battery for part (a)? For part (b)? For part (c)?

Fig. P1.32

1.34 Consider the nonseries-parallel circuit shown in Fig. P1.34. (a) When $R = \frac{1}{2} \Omega$, then $v_1 = 6$ V. Determine the resistance $R_{eq} = V_s/i$ loading the battery.

1.35 Consider the nonseries-parallel circuit shown in Fig. P1.34. When $R = 4 \Omega$, then $v_1 = 4 V$. Determine the resistance $R_{eq} = V_s/i$ loading the battery.

1.36 Consider the nonseries-parallel circuit shown in Fig. P1.34. Determine *R* and the resistance $R_{eq} = V_s/i$ loading the battery when $v_1 = 3$ V.

Fig. P1.34

1.44 Consider the circuit shown in Fig. P1.44. Find v when (a) K = 2, and (b) K = 4.

1.45 Consider the circuit shown in Fig. P1.45. Find i when (a) K = 2, and (b) K = 4.

1.46 Consider the circuit shown in Fig. P1.46. (a) Find the resistance $R_{eq} = v_1/i_1$. (b) Find the voltage v_2 in terms of the applied voltage v_1 .

1.47 Consider the circuit shown in Fig. P1.47. (a) Find the resistance $R_{eq} = v_1/i_1$. (b) Use voltage division to find v in terms of v_g . (c) Find the voltage v_2 in terms of the applied voltage v_1 .

Fig. P1.43

Fig. P1.44

Fig. P1.47

1.48 For the circuit shown in Fig. P1.48, suppose that $R = 10 \Omega$. Determine (a) v_s , and (b) $R_{eq} = v_s/i_s$.

1.49 For the circuit shown in Fig. P1.48, suppose that $R = 8 \Omega$. Determine (a) v_s , and (b) $R_{eq} = v_s/i_s$.

Fig. P1.45

1.50 For the circuit shown in Fig. P1.50, suppose that $R = 5 \Omega$. Determine (a) i_s , and (b) $R = v_s/i_s$.

1.51 For the circuit shown in Fig. P1.50, suppose that $R = 3 \Omega$. Determine (a) i_s , and (b) $R_{co} = v_s/i_s$.

1.52 The circuit shown in Fig. P1.52 is a single field-effect transistor (FET) amplifier in which the input is v_1 and the output is v_2 . The portion of the circuit in the shaded box is an approximate model of an FET. (a) Find v_{gs} in terms of v_1 . (b) Find v_2 in terms of v_1 . (c) Find v_2 when $v_1 = 0.1 \cos 120\pi t$ V.

1.53 The circuit shown in Fig. P1.53 is a single bipolar junction transistor (BJT) amplifier in which the input is v_1 and the output is v_2 . The portion of the circuit in the shaded box is an approximate model of a BJT in the common-emitter configuration. (a) Find i_b in terms of the input voltage v_1 . (b) Find the output voltage v_2 in terms of v_1 . (c) Find v_2 when $v_1 = 0.1 \cos 120\pi t$ V.

1.54 The circuit shown in Fig. P1.54 is another single bipolar junction transistor (BJT) amplifier in which the input is v_1 and the output is v_2 . The portion in the shaded box is an approximate model of a BJT in the common-base configuration. (a) Find i_e in terms of the input voltage v_1 . (b) Find the output voltage v_2 in terms of v_1 . (c) Find v_1 when $v_1 = 0.1 \cos 120\pi t$ V.

1.55 For the circuit given in Fig. 1.51 on p. 34, v = 12 V, $i_1 = 4$ A, and $i_2 = 6$ A. Determine the power absorbed by each element in the circuit.

1.56 For the circuit given in Fig. 1.52 on p. 36, v = 24 V. Determine the power absorbed by each element in the circuit.

Fig. P1.53