

Fig. P3.26



Fig. P3.27

- **3.29** For the circuit shown in Fig. P3.28, replace the capacitor with a 5-H inductor. For the resulting circuit, the switch opens at time t = 0 s. Write a differential equation in i(t) for  $t \ge 0$  s. Find i(t) and v(t) for all time and sketch these functions.
- **3.30** For the circuit shown in Fig. P3.30, suppose that  $i_s(t) = 10$  A for t < 0 s and  $i_s(t) = 0$  A for  $t \ge 0$  s. Write a differential equation in i(t) for  $t \ge 0$  s. Find i(t) and v(t) for all time and sketch these functions.



Fig. P3.30

- **3.31** For the circuit shown in Fig. P3.30, replace the inductor with a 0.1-F capacitor. Suppose that  $i_s(t) = 10$  A for t < 0 s and  $i_s(t) = 0$  A for  $t \ge 0$  s. Write a differential equation in y(t) for  $t \ge 0$  s. Find
  - Write a differential equation in v(t) = 0 A for  $t \ge 0$  s. Find v(t) and i(t) for all time and sketch these functions.
- **3.32** For the circuit shown in Fig. P3.32, suppose that  $v_s(t) = 18$  V for t < 0 s and  $v_s(t) = 0$  V for  $t \ge 0$  s. Write a differential equation in i(t) for  $t \ge 0$  s. Find i(t) and v(t) for all time and sketch these functions.



Fig. P3.32

- For the circuit shown in Fig. P3.32, replace inductor with a  $\frac{1}{9}$ -F capacitor. Suppose that t = 18 V for t < 0 s and  $v_s(t) = 0 \text{ V}$  for  $t \ge 0 \text{ s}$ . The a differential equation in v(t) for  $t \ge 0$  s. Find and i(t) for all time and sketch these functions.
- For the circuit shown in Fig. P3.34, suppose  $v_s(t) = 12 \text{ V}$  for t < 0 s and  $v_s(t) = 0 \text{ V}$  for t < 0 s. Write a differential equation in v(t) for t < 0 s. Find v(t) and v(t) for all time and sketch these ections.



Fig. P3.34

3.35 For the circuit shown in Fig. P3.34, replace capacitor with a 3-H inductor. Suppose that

- $v_s(t) = 12 \text{ V for } t < 0 \text{ s and } v_s(t) = 0 \text{ V for } t \ge 0 \text{ s.}$  Write a differential equation in i(t) for  $t \ge 0$  s. Find i(t) and v(t) for all time and sketch these functions.
- **3.36** For the circuit shown in Fig. P3.36, the switch opens at time t = 0 s. Write a differential equation in i(t) for  $t \ge 0$  s. Find i(t) and v(t) for all time and sketch these functions.
- **3.37** For the circuit shown in Fig. P3.36, replace the inductor with a  $\frac{1}{8}$ -F capacitor. For the resulting circuit, the switch opens at time t = 0 s. Write a differential equation in v(t) for  $t \ge 0$  s. Find v(t) and i(t) for all time and sketch these functions.
- **3.38** For the circuit shown in Fig. P3.38, the switch opens at time t = 0 s. Find  $v_1(t)$ ,  $v_2(t)$ ,  $i_1(t)$ ,  $i_2(t)$ , and v(t) for all time.
- **3.39** For the circuit shown in Fig. P3.38, change the value of the 2- $\Omega$  resistor to 1  $\Omega$ . The switch in the circuit opens at time t = 0 s. Find  $v_1(t)$ ,  $v_2(t)$ ,  $i_1(t)$ ,  $i_2(t)$ , and v(t) for all time.





Fig. P3.38

- **3.40** For the parallel *RC* circuit given in Fig. P3.8, suppose that  $i_s(t) = 6u(t)$  A. Find the step responses v(t) and i(t), and sketch these functions.
- **3.41** For the parallel *RL* circuit given in Fig. P3.17, find the unit step responses  $i_L(t)$  and v(t), and sketch these functions.
- **3.42** For the circuit shown in Fig. P3.42, find the step responses v(t) and i(t), and sketch these functions.



Fig. P3.42

- **3.43** For the circuit given in Fig. P3.30, suppose that  $i_s(t) = 10u(t)$  A. Use Thévenin's theorem to find the step responses i(t) and v(t), and sketch these functions.
- **3.44** For the circuit given in Fig. P3.30, replace the inductor with a 0.1-F capacitor. Suppose that  $i_s(t) = 10u(t)$  A. Use Thévenin's theorem to find the step responses v(t) and i(t), and sketch these functions.
- **3.45** For the circuit given in Fig. P3.34, suppose that  $v_s(t) = 12u(t)$  V. Find the step responses v(t) and i(t), and sketch these functions.
- **3.46** For the circuit given in Fig. P3.34, replace the capacitor with a 3-H inductor. Suppose that  $(i_s) = 12u(t)$  V. Find the step responses i(t) and v(t), and sketch these functions.

- **3.47** The step responses  $v_C(t)$  and i(t) for the series *RC* circuit shown in Fig. P3.47*a* are given by Eq. 3.19 and Eq. 3.20, respectively. Use duality to determine the step responses  $i_L(t)$  and v(t) for the parallel *GL* circuit shown in Fig. P3.47*b*.
- **3.48** Find the step response  $v_o(t)$  for the op-amp circuit shown in Fig. P3.48.



Fig. P3.48

**3.49** Find the step responses v(t) and  $v_o(t)$  for the op-amp circuit shown in Fig. P3.49.



Fig. P3.49



Fig. P3.47