

3.63 For the series *RLC* circuit shown in Fig. P3.63, suppose that $R = 7 \Omega$, L = 1 H, C = 0.1 F,

 $v_s(t) = 12 \text{ V for } t < 0 \text{ s and } v_s(t) = 0 \text{ V for } t \ge 0 \text{ s.}$

Fig. P3.63

3.64 For the series *RLC* circuit shown in Fig. P3.63, suppose that $R = 2 \Omega$, L = 0.25 H, C = 0.2 F, $v_s(t) = 10$ V for t < 0 s and $v_s(t) = 0$ V for

$$t \ge 0$$
 s. Find $v(t)$ and $i(t)$ for all time.
3.65 For the series *RLC* circuit shown in Fig. P3.63, suppose that $R = 2 \Omega$, $L = 1$ H, $C = 1$ F,

Find
$$v(t)$$
 and $i(t)$ for all time.
3.66 For the circuit shown in Fig. P3.66, suppose that $v_s(t) = 6$ V for $t < 0$ s and $v_s(t) = 0$ V for

 $v_s(t) = 6 \text{ V for } t < 0 \text{ s and } v_s(t) = 0 \text{ V for } t \ge 0 \text{ s.}$

Fig. P3.663.67 For the circuit shown in Fig. P3.67, suppose

3.68 For the circuit shown in Fig. P3.67, inter-

i(t) and v(t).

Find the capacitor voltage v(t) and the inductor current i(t) for all time. **3.69** For the parallel RLC circuit shown in Fig. P3.69, suppose that $R = 0.5 \Omega$, L = 0.2 H, $C = 0.5 \Omega$

0.25 F, and $i_s(t) = 2u(t)$ A. Find the step responses

change the inductor and the capacitor. Suppose that

 $v_{\mathfrak{s}}(t) = 6 \text{ V for } t < 0 \text{ s and } v_{\mathfrak{s}}(t) = 0 \text{ V for } t \ge 0 \text{ s.}$

Fig. **P**3.69

3.70 For the parallel *RLC* circuit shown in Fig. P3.69, suppose that $R = 3 \Omega$, L = 3 H, $C = \frac{1}{12} F$, and $i_s(t) = 4u(t)$ A. Find the step responses i(t) and v(t).

3.71 For the series *RLC* circuit shown in Fig. P3.63, suppose that $R = 7 \Omega$, L = 1 H, C = 0.1 F, and $v_s(t) = 12u(t) \text{ V}$. Find the step responses v(t) and i(t).

that $v_s(t) = 6$ V for t < 0 s and $v_s(t) = 0$ V for 3.72 For the series *RLC* circuit shown in Fig. $t \ge 0$ s. Find i(t) and v(t) for all time. P3.63, suppose that R = 2 Ω , L = 1 H, C = 1 F,