EE 231
Homework 9
Due October 29, 2010

1. A serial parity-bit generator is a sequential circuit that does the following: it receives an \(n \)-bit message followed by a 0 (so there are \(n + 1 \) clock bits to send the message). At the output, the circuit sends the original \(n \)-bit message, but replaces the 0 with a parity bit. Design a 4-bit serial parity-bit generator which replaces the zero bit with an odd parity bit.

 (a) Draw a state diagram for the circuit.
 (b) Draw a state transition table for the circuit.
 (c) Show how to implement the circuit using D flip-flops.
 (d) Write a Verilog program to implement the circuit.
 (e) Is this a Mealy machine or a Moore machine? Why?

2. Design a synchronous sequential circuit that will count through the sequence 0, 2, 4, 6 when its control input \(x \) is 0, and through the sequence 6, 4, 2, 0 when \(x = 1 \). The circuit should return to the 0 state if it finds itself in an invalid state.

 (a) Draw a state diagram for the circuit.
 (b) Draw a state transition table for the circuit.
 (c) Write a Verilog module to implement the system.

3. The serial adder of Fig. 6.6 uses two four-bit shift registers. Register \(A \) holds the binary number 1101 and register \(B \) holds 0110. The carry flip-flop is initially reset to 0. List the binary values in register \(A \) and the carry flip-flop after each shift.

4. Consider the following Verilog statements

 (a) \texttt{RegA <= 32;}
 \texttt{RegB <= RegA;}
 Assume that \texttt{RegA} contains the value of 45 and \texttt{RegB} contains the value of 32 initially. What are the values of \texttt{RegA} and \texttt{RegB} after execution?

 (b) \texttt{RegA = 32;}
 \texttt{RegB = RegA;}
 Assume that \texttt{RegA} contains the value of 45 and \texttt{RegB} contains the value of 32 initially. What are the values of \texttt{RegA} and \texttt{RegB} after execution?
5. Consider the following Verilog code fragment:

```verilog
reg [3:0] A, B;

always @(posedge clock)
begin
    A = 5;
    B = A + 2;
end
```

Before the clock edge, A has the value of 3, and B has the value of 6. What will be the values of A and B after the clock edge?

6. Consider the following Verilog code fragment:

```verilog
reg [3:0] A, B;

always @(posedge clock)
begin
    A <= 5;
    B <= A + 2;
end
```

Before the clock edge, A has the value of 3, and B has the value of 6. What will be the values of A and B after the clock edge?