Lecture 21
March 7, 2012

The MC9S12 Pulse Width Modulation Function

- The MC9S12 PWM system
- Registers used by the PWM system
- How to set the period for PWM Channel 0
- How to set the clock source for PWM Channel 0
- Interdependence of clocks for Channels 0 and 1
- PWM Channels 2 and 3
- Using the MC9S12 PWM
- A program to use the MC9S12 PWM
Pulse Width Modulation on the MC9S12

- Because PWM is used so often the MC9S12 has a built-in PWM system
- The MC9S12 PWM does not use interrupts
- The PWM system on the MC9S12 is very flexible
 - It allows you to set a wide range of PWM frequencies
 - It allows you to generate up to 8 separate PWM signals, each with a different frequency
 - It allows you to generate eight 8-bit PWM signals (with 0.5% accuracy) or four 16-bit PWM signals (with 0.002% accuracy)
 - It allows you to select high polarity or low polarity for the PWM signal
 - It allows you to use left-aligned or center-aligned PWM signals
- Because the MC9S12 PWM system is so flexible, it is fairly complicated to program
- To simplify the discussion we will only discuss 8-bit, left-aligned, high-polarity PWM signals.
- Full information about the MC9S12 PWM subsystem can be found in Pulse Width Modulation Block Users Guide
Pulse Width Modulation

Need a way to set the PWM period and duty cycle

The HC12 sets the PWM period by counting from 0 to some maximum count with a special PWM clock

\[\text{PWM Period} = \text{PWM Clock Period} \times \text{Max Count} \]

Once the PWM period is selected, the PWM duty cycle is set by telling the HC12 how many counts it should keep the signal high for

\[\text{PWM Duty Cycle} = \frac{\text{Count High}}{\text{Max Count}} \]

The hard part about PWM on the HC12 is figuring out how to set the PWM Period
The MC9S12 Pulse Width Modulation System

• The PWM outputs are on pins 0 through 7 of Port P
 – On the Dragon12-Plus board, pins 0 through 3 of Port P control the seven segment LEDs
 – If you want to use the seven segment LEDs in addition to PWM, you will need to use PWM channels 4 through 7
• There are 33 registers used by the PWM subsystem
• You don’t need to work with all 33 registers to activate PWM
• To select 8-bit mode, write a 0 to Bits 7, 6, 5 and 4 of PWMCTL register.
• To select left-aligned mode, write 0x00 to PWMCAE.
• To select high polarity mode, write an 0xFF to PWMPOL register.
• To set the period for a PWM channel you need to program bits in the following PWM registers
 – For Channel 0 the registers are PWMCLK, PWMPRCLK, PWMSCLA and PWMPER0
 – For Channel 1 the registers are PWMCLK, PWMPRCLK, PWMSCLA and PWMPER1
 – For Channel 2 the registers are PWMCLK, PWMPRCLK, PWMSCLB and PWMPER2
 – For Channel 3 the registers are PWMCLK, PWMPRCLK, PWMSCLB and PWMPER3
 – For Channel 4 the registers are PWMCLK, PWMPRCLK, PWMSCLA and PWMPER4
 – For Channel 5 the registers are PWMCLK, PWMPRCLK, PWMSCLA and PWMPER5
 – For Channel 6 the registers are PWMCLK, PWMPRCLK, PWMSCLB and PWMPER6
 – For Channel 7 the registers are PWMCLK, PWMPRCLK, PWMSCLB and PWMPER7
• To set the duty cycle for a PWM channel you need to write to the PWDTYN register for Channel n.
• To enable the PWM output on one of the pins of Port P, write a 1 to the appropriate bit of PWME
Set PWENn = 1 to enable PWM on Channel n
If PWENn = 0, Port P bit n can be used for general purpose I/O

PPOLn - Choose polarity 1 => high polarity 0 => low polarity
We will use high polarity only. PWMPOL = 0xFF;
With high polarity, duty cycle is amount of time output is high

PCLKn - Choose clock source for Channel n
CH7, CH6, CH3, CH2 can use either B (0) or SB (1)
CH5, CH4, CH1, CH0 can use either A (0) or SA (1)

\[
SB = \frac{B}{2 \times PWMSCLB} \quad SA = \frac{A}{2 \times PWMSCLB}
\]

This register selects the prescale clock source for clocks A and B independently

PCKA[2–0] - Prescaler for Clock A \(A = \frac{24 \text{ MHz}}{2^{PCKA[2–0]}} \)

PCKB[2–0] - Prescaler for Clock B \(B = \frac{24 \text{ MHz}}{2^{PCKB[2–0]}} \)
Select center aligned outputs (1) or left aligned outputs (0).
Choose PWMCAE = 0x00 to choose left aligned mode.

CONxy – Concatenate PWMx and PWMy into one 16 bit PWM
Choose PWMCTL = 0x00 to choose 8-bit mode.

PWMSCLA adjusts frequency of Clock SA
PWMSCLB adjusts frequency of Clock SB

PWMPERx sets the period of Channel n
PWM Period = PWMPERn x Period of PWM Clock n

PWMDTYx sets the duty cycle of Channel n
PWM Duty Cycle = PWMDTYn / Period x 100%
Clock Select for PWM Channel 0

You need to set PCKA, PWSCALA, PCLK0, and PWPER0

24 MHz Clock \(\div 2^{PCKA} \) \(\div 2^{PWSCALA} \) \(\div 2 \) 0 1 PCLK0

PCLK0 counts from 0 to PWPER0 - 1

It takes PWPER0 periods of CLK0 to make one Ch0 period

Ch0 Period = PWPER0 \times \text{CLK0 Period}

\[
Ch_{0 \text{ Period}} = \begin{cases}
PWPER0 \times (2^{PCKA}) & \text{(PCLK0 = 0)} \\
PWPER0 \times (2^{PCKA+1}) \times PWSCALA & \text{(PCLK0 = 1)}
\end{cases}
\]
How to set the Period for PWM Channel 0

- To set the period for PWM Channel 0:
 - Set the PWM Period register for Channel 0, PWMPER0
 - CLK0, the clock for Channel 0, drives a counter (PWCNT0)
 - PWCNT0 counts from 0 to PWMPER0 - 1
 - The period for PWM Channel 0 is PWMPER0 × Period of CLK0

- There are two modes for the clock for PWM Channel 0
 - You select the mode by the PCLK0 bit
 - If PCLK0 == 0, CLK0 is generated by dividing the 24 MHz clock by 2^{PCKA}, where PCKA is between 0 and 7
 - If PCLK0 == 1, CLK0 is generated by dividing the 24 MHz clock by $2^{PCKA+1} \times PWSCALA$, where PCKA is between 0 and 7 and PWSCALA is between 0 and 255 (a value of 0 gives a divider of 256)

- The Period for PWM Channel 0 (in number of 41.67 ns cycles) is calculated by
 \[
 \text{Period} = \begin{cases}
 \text{PWMPER0} \times 2^{PCKA} & \text{if PCLK0 == 0} \\
 \text{PWMPER0} \times 2^{PCKA+1} \times PWSCALA & \text{if PCLK0 == 1}
 \end{cases}
 \]

- With PCLK0 == 0, the maximum possible PWM period is 1.36 ms
- With PCLK0 == 1, the maximum possible PWM period is 0.695 s
• To get a 0.5 ms PWM period, you need 12,000 cycles of the 24 MHz clock.

\[12,000 = \begin{cases}
PWMPERO \times 2^{PCKA} & \text{if } PCLK0 == 0 \\
PWMPERO \times 2^{PCKA+1} \times PWMSCLA & \text{if } PCLK0 == 1
\end{cases} \]

• You can do this in many ways

 - With \(PCLK0 = 0 \), can have

PCKA	PWMPERO	Close
6	187	
7	94	Close

 - With \(PCLK0 = 1 \), can have

 | PCKA | PWMSCLA | PWMPERO | |
|---|---|---|---|
 | 0 | 24 | 250 | Exact |
 | 0 | 25 | 240 | Exact |
 | 0 | 30 | 200 | Exact |
 | 0 | 40 | 150 | Exact |
 | 0 | 50 | 120 | Exact |
 | 1 | 12 | 250 | Exact |
 | 1 | 15 | 200 | Exact |
 | 2 | 6 | 250 | Exact |
 | 2 | 10 | 150 | Exact |
 | 3 | 3 | 250 | Exact |

and many other combinations
• You want \(\text{PWMPER0} \) to be large (say, 100 or larger)
 - If \(\text{PWMPER0} \) is small, you don’t have much control over the duty cycle
 - For example, if \(\text{PWMPER0} = 4 \), you can only have 0\%, 25\%, 50\%, 75\% or 100\% duty cycle

• Once you choose a way to set the PWM period, you can program the PWM registers

• For example, to get a 0.5 ms period, let’s use \(\text{PCLK0} = 1 \), \(\text{PCKA} = 0 \), \(\text{PWMSCLA} = 30 \), and \(\text{PWMPER0} = 200 \)

• We need to do the following:
 - Write 0x00 to \(\text{PWMCTL} \) (to set up 8-bit mode)
 - Write 0xFF to \(\text{PWMPOL} \) (to select high polarity mode)
 - Write 0x00 to \(\text{PWMCAE} \) (to select left aligned mode)
 - Write 0 to Bits 2,1,0 of \(\text{PWMPRCLK} \) (to set \(\text{PCKA} \) to 0)
 - Write 1 to Bit 0 of \(\text{PWMCLK} \) (to set \(\text{PCLK0} = 1 \))
 - Write 30 to \(\text{PWMSCLA} \)
 - Write 200 to \(\text{PWMPER0} \)
 - Write 1 to Bit 0 of \(\text{PWME} \) (to enable PWM on Channel 0)
 - Write the appropriate value to \(\text{PWDTY0} \) to get the desired duty cycle (e.g., \(\text{PWDTY0} = 120 \) will give 60\% duty cycle)
C code to set up PWM Channel 0 for 0.5 ms period (2 kHz frequency) PWM with 60% duty cycle

```c
PWMCTL = 0x00;      /* 8-bit Mode */
PWMPOl = 0xFF;       /* High polarity mode */
PWMCAE = 0x00;       /* Left-Aligned */

PWMPRCLK = PWMPRCLK & ~0x07;  /* PCKA = 0 */
PWMCLK = PWMCLK | 0x01;  /* PCLK0 = 1 */
PWMSCLA = 30;
PWMPERO = 200;
PWME = PWME | 0x01;  /* Enable PWM Channel 0 */
PWDTY0 = 120;  /* 60% duty cycle on Channel 0 */
```
The MC9S12 Pulse Width Modulation Subsystem

- The MC9S12 PWS subsystem allows you to control up to eight devices by adjusting the percentage of time the output is active.
- We will discuss 8-bit, high polarity, left-aligned modes.
- Different types of devices need different PWM periods.
- The hard part of setting up the PWM subsystem is figuring out how to set up the MC9S12 to get the period you want.
- Once you determine the period in seconds, convert this to clock cycles:

\[\text{Period in cycles} = \text{Period in seconds} \times 24,000,000 \text{ cycles/sec} \]

- Once you have period in clock cycles, figure out how to get this value (or close to this value) using the following:

\[\text{Period} = \begin{cases}
\text{PWMPER}_x \times 2^N & \text{if PCLK}_x == 0 \\
\text{PWMPER}_x \times 2^{N+1} \times M & \text{if PCLK0}_x == 1
\end{cases} \]

- Find values of PWMPERx, N and (if using clock mode 1) M.
- Choose PWMPERx to be fairly large (typically 100 or greater).
- For channels 0, 1, 4 and 5, N is set using the PCKA bits of register PWMPRCLK, and M is set by the eight-bit register PWMSCLA.
- For channels 2, 3, 6 and 7, N is set using the PCKB bits of register PWMPRCLK, and M is set by the eight-bit register PWMSCLB.
- For example, to get a 10 ms period on Channel 0:

\[\text{Period in cycles} = 10 \text{ ms} \times 24,000,000 \text{ cycles/sec} = 240,000 \]

Cannot use clock mode 0. The largest number of cycles possible using clock mode 0 is
\[255 \times 2^7 = 32,640 \]

Using clock mode 1:

\[240,000 = \text{PWMPER}_0 \times 2^{N+1} \times M \]

Let PWMPER0 = 100. Then we get the following:
Since M has to be less than 256, we can use $N = 3$ or $N = 4$.

For $N = 3$, $M = 150$:

\[
\begin{align*}
\text{PWMCLK} &= \text{PWMCLK} | 0x01; \quad \text{// Clock mode 1 for Channel 0} \\
\text{PWMPRCLK} &= (\text{PWMPRCLK} \& \neg 0x4) | 0x03; \quad \text{// N = 3 for Channel 0} \\
\text{PWMSCLA} &= 150 \quad \text{// M = 150 for Channel 0} \\
\text{PWMPER0} &= 100;
\end{align*}
\]
Interdependence of clocks for Channels 0, 1, 4 and 5

- The clocks for Channels 0, 1, 4 and 5 are interdependent.
- They all use PCKA and PWMSCLA.
- To set the clock for Channel n, you need to set PCKA, PCLKn, PWMSCLA (if PCLKn == 1) and PWMPERn where n = 0, 1, 4 or 5.

Clock Select for PWM Channels 0 and 1

24 MHz Clock

\[
\frac{\cdot}{2} \text{PCKA} \quad \frac{\cdot}{\text{PWMSCLA}} \quad \frac{\cdot}{2}
\]

CLK0

Same for Channels 4 and 5

PCLK0

CLK1

PCLK1
PWM Channels 2, 3, 6 and 7

- PWM channels 2, 3, 6 and 7 are similar to PWM channels 0, 1, 4 and 5
- To set the clock for Channel n, you need to set $PCKB$, $PCLKn$, $PWMSCLB$ (if $PCLKn == 1$) and $PWMPERn$ where $n = 2, 3, 6$ or 7

Clock Select for PWM Channels 2 and 3

24 MHz Clock $\div 2^{PCKB}$ $\div PWMSCLB$ $\div 2$

CLK2

$PCLK2$

CLK3

$PCLK3$

Same for Channels 6 and 7
Using the MC9S12 PWM

1. Choose 8-bit mode (PWMCTL = 0x00)
2. Choose high polarity (PWMPOL = 0xFF)
3. Choose left-aligned (PWMCAE = 0x00)
4. Select clock mode in PWMCLK:
 - PCLKn = 0 for 2^N,
 - PCLKn = 1 for $2^{(N+1)} \times M$,
5. Select N in PWMPRCLK register:
 - PCKA for channels 5, 4, 1, 0;
 - PCKB for channels 7, 6, 3, 2.
6. If PCLKn = 1, select M
 - PWMSCLA = M for channels 5, 4, 1, 0
 - PWMSCLB = M for channels 7, 6, 3, 2.
7. Select PWMPERn, normally between 100 and 255.
8. Enable desired PWM channels: PWME.
9. Select PWMDTYn, normally between 0 and PWMPERn. Then
 \[
 \text{Duty Cycle n} = \frac{\text{PWMDTYn}}{\text{PWMPERn}} \times 100\%
 \]
 Change duty cycle to control speed of motor or intensity of light, etc.
10. For 0% duty cycle, choose PWMDTYn = 0x00.
Program to use the MC9S12 PWM System

/*
 * Program to generate 15.6 kHz pulse width modulation
 * on Port P Bits 0 and 1
 *
 * To get 15.6 kHz: 24,000,000/15,600 = 1538.5
 *
 * Cannot get exactly 1538.5
 *
 * Use 1536, which is 2^9 x 3
 *
 * Lots of ways to set up PWM to achieve this. One way is 2^3 x 192
 * Set PCKA to 3, do not use PWMSCLA, set PWMPER to 192
 *
 */
#include "hcs12.h"

main()
{
 /* Choose 8-bit mode */
 PWMCTL = 0x00;
 /* Choose left-aligned */
 PWMCAE = 0x00;
 /* Choose high polarity on all channels */
 PWMPOL = 0xFF;
 /* Select clock mode 0 for Channels 1 and 0 (no PWMSCLA) */
 PWMCCLK = PWMCLK & ~0x03;
 /* Select PCKA = 3 for Channels 1 and 0 */
 PWMPRCLK = (PWMPRCLK & ~0x4) | 0x03;
 /* Select period of 192 for Channels 1 and 0 */
 PWMPER1 = 192;
 PWMPER0 = 192;
 /* Enable PWM on Channels 1 and 0 */
 PWME = PWME | 0x03;
 PWMDTY1 = 96; /* 50% duty cycle on Channel 1 */
 PWMDTY0 = 46; /* 25% duty cycle on Channel 0 */

 while (1)
 {
 /* Code to adjust duty cycle to meet requirements */
 }
}