1. Compare the time-domain response of five-pole Bessel, Butterworth, and elliptic filters.

 (a) Design a five-pole Butterworth filter with a 3-dB cutoff frequency of 4π rad/sec. (Use the MATLAB function `buttap` to design a filter with a 1 rad/sec 3-dB point, and use the MATLAB function `lp2lp` to transform it to a filter with a 4π rad/sec 3-dB point.) Plot the gain and phase of the filter (using linear plots) from 0 to 20 rad/sec.

 (b) Use the MATLAB `lsim` function to compute and plot the output of the filter for the input $x(t) = u(t) - u(t - 1)$.

 (c) Repeat Parts (a) and (b) for a five-pole Bessel filter. Use the MATLAB function `besselap`.

 (d) Repeat Parts (a) and (b) for a five-pole elliptic filter. Use the MATLAB function `ellipap`. For `ellipap`, specify R_p of 3 dB, and R_s of 60 dB.

 (e) Which of the three filters has the best time-domain response – that is, which has the least amount of overshoot and undershoot ("ringing").

3. Problem 10.3.

4. Problem 10.4.

5. Problem 10.5.