EE 451

Solution of Difference Equations in the Time Domain

The difference equation
\[\sum_{k=0}^{N} a_k y[n - k] = \sum_{k=0}^{M} b_k x[n - k] \]
(where \(a_0 = 1 \)) has the solution
\[y[n] = \left\{ C_1 \lambda_1^n + \cdots + C_N \lambda_N^n \right\} u[n] + D_0 \delta[n] + \cdots + D_{M-N-1} \delta[n - (M - N - 1)] + y_p[n] \]
\[y_{\infty}[n] \]
(1)

where the \(\lambda_k \)'s are the roots of the characteristic polynomial of the system:
\[\lambda^N + a_1 \lambda^{N-1} + \cdots + a_{N-1} \lambda + a_N = 0. \]

(For repeated roots, use \(\lambda_k^n \), \(n \lambda_k^n \), \(n^2 \lambda_k^n \), etc. For example, if \(\lambda_1 = \lambda_2 \), you would use \(C_1 \lambda_1^n + C_2 n \lambda_1^n \) instead of \(C_1 \lambda_1^n + C_2 \lambda_1^n \).

\(y_p[n] \) is the particular (steady-state) solution which depends on the input:

<table>
<thead>
<tr>
<th>(x[n])</th>
<th>(y_p[n])</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A u[n])</td>
<td>(K u[n])</td>
</tr>
<tr>
<td>(A \alpha^n u[n])</td>
<td>(K \alpha^n u[n])</td>
</tr>
<tr>
<td>(A \cos[\omega_n n] + B \sin[\omega_n n])</td>
<td>(K_1 \cos[\omega_n n] + K_2 \sin[\omega_n n])</td>
</tr>
</tbody>
</table>

If the characteristic polynomial has a root at the value of an input exponential (e.g., \(\lambda_1 = \frac{1}{2} \) and \(x[n] = \left(\frac{1}{2} \right)^n \)) you would use \(K n \lambda_k^n \) for \(y_p[n] \) (e.g., \(y_p[n] = K n \left(\frac{1}{2} \right)^n \)).

There are \(M - N \ D_i \)'s. If \(M \leq N \) there are no \(D_i \)'s.

To find the impulse response, there is no \(y_p[n] \), and there are \(M - N + 1 \ D_i \)'s. If \(M < N \) there are no \(D_i \)'s for the impulse response.

Solve for the unknowns by finding \(y[0] \), \(y[1] \), \(y[2] \), \(\cdots \) until you get as many equations as you have unknowns. Solve these equations for the unknowns.

You can solve the difference equation for the case \(x[n] = 0 \), subject to the initial conditions of the system. This is the natural response or zero-input response, \(y_{z1}[n] \), of the system. You can further solve for the case \(y[n] = 0 \) for \(n < 0 \) for the actual input \(x[n] \). This is the forced response or zero-state response, \(y_{z1}[n] \), of the system. The total response is the sum of the two: \(y[n] = y_{z1}[n] + y_{z2}[n] \).

A system is BIBO stable if, for every bounded input, the output is bounded. If the input \(x[n] \) is bounded, then the particular solution \(y_p[n] \) will be bounded. Thus, the only possible unbounded terms in Eq. (1) are the \(\lambda_k^n \)'s. These terms are bounded (\(\lambda_k^n \to 0 \) as \(n \to \infty \)) if \(|\lambda_k| < 1 \). Hence, the system is BIBO stable if \(|\lambda_k| < 1 \) for all the \(k \)'s. (\(\lambda_k^n \) doesn’t blow up if \(|\lambda_k| = 1 \). However, if \(|\lambda_k| = 1 \), the input \(x[n] = \lambda_k^n \) will produce the output \(y[n] = C_1 \lambda_k^n + K n \lambda_k^n \), and the \(K n \lambda_k^n \) term will blow up as \(n \to \infty \).)