TIP31, TIP31A, TIP31B, TIP31C
NPN SILICON POWER TRANSISTORS

- Designed for Complementary Use with the TIP32 Series
- 40 W at 25°C Case Temperature
- 3 A Continuous Collector Current
- 5 A Peak Collector Current
- Customer Specified Selections Available

Absolute Maximum Ratings at 25°C Case Temperature (unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>TIP31</th>
<th>TIP31A</th>
<th>TIP31B</th>
<th>TIP31C</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCEO</td>
<td>80 V</td>
<td>100 V</td>
<td>120 V</td>
<td>140 V</td>
</tr>
<tr>
<td>VCES</td>
<td>40 V</td>
<td>60 V</td>
<td>80 V</td>
<td>100 V</td>
</tr>
<tr>
<td>IC</td>
<td>5 V</td>
<td>5 V</td>
<td>5 V</td>
<td>5 V</td>
</tr>
<tr>
<td>ICM</td>
<td>3 A</td>
<td>3 A</td>
<td>3 A</td>
<td>3 A</td>
</tr>
<tr>
<td>IB</td>
<td>1 A</td>
<td>1 A</td>
<td>1 A</td>
<td>1 A</td>
</tr>
<tr>
<td>PDM</td>
<td>40 W</td>
<td>40 W</td>
<td>40 W</td>
<td>40 W</td>
</tr>
<tr>
<td>PDM</td>
<td>2 W</td>
<td>2 W</td>
<td>2 W</td>
<td>2 W</td>
</tr>
<tr>
<td>LDM</td>
<td>32 mJ</td>
<td>32 mJ</td>
<td>32 mJ</td>
<td>32 mJ</td>
</tr>
</tbody>
</table>

T & TSTG: Operating junction and storage temperature range

- T = -55°C to 150°C
- TSTG = 25°C

NOTES:
1. This value applies for \(\mu = 0.3 \) ms duty cycle < 10%.
2. Denotes the VCEO or VCES at the case temperature.
3. Denotes the VCEO or VCES at the case temperature at the rate of 0 to 25°C.
4. This rating is based on the capability of the transistor to operate safely in a circuit of
 \(V_{CE} = 150 \) V, \(I_{CE} = 0 \) A, \(V_{BE} = 0 \) V, \(V_{CE} = 150 \) V, \(I_{CE} = 0 \) A,
 \(V_{BE} = 0 \) V.

Electrical Characteristics at 25°C Case Temperature (unless otherwise noted)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCEdss</td>
<td>30 mA</td>
<td>30 mA</td>
<td>30 mA</td>
<td>mA</td>
</tr>
<tr>
<td>IC</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>mA</td>
</tr>
<tr>
<td>VCES</td>
<td>0.2</td>
<td>0.2</td>
<td>0.2</td>
<td>mA</td>
</tr>
<tr>
<td>ICc</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>mA</td>
</tr>
<tr>
<td>IcBO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>mA</td>
</tr>
<tr>
<td>IcBO</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>mA</td>
</tr>
<tr>
<td>HFE</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>mA</td>
</tr>
<tr>
<td>VCE(sat)</td>
<td>1.2</td>
<td>1.2</td>
<td>1.2</td>
<td>V</td>
</tr>
<tr>
<td>VBE</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>V</td>
</tr>
<tr>
<td>IF(f)</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>mA</td>
</tr>
<tr>
<td>IF(f)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>kHz</td>
</tr>
</tbody>
</table>

Texas Instruments
TIP31, TIP31A, TIP31B, TIP31C
NPN SILICON POWER TRANSISTORS

Thermal Characteristics

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>R(jc)</td>
<td>3.125</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
<tr>
<td>R(ja)</td>
<td>62.5</td>
<td></td>
<td></td>
<td>°C/W</td>
</tr>
</tbody>
</table>

Resistive Load Switching Characteristics at 25°C Case Temperature (unless otherwise noted)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>TEST CONDITIONS1</th>
<th>MIN</th>
<th>TYP</th>
<th>MAX</th>
<th>UNIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>t(on)</td>
<td>VCE = 4 V</td>
<td>0.5</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>t(off)</td>
<td>VCE = 4.3 V</td>
<td>2</td>
<td></td>
<td></td>
<td>µs</td>
</tr>
<tr>
<td>Ic (max)</td>
<td>-40 V, I = 0.1 A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iq (max)</td>
<td>0.1 A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ube (min)</td>
<td>0.1 A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Voltage and current values shown are nominal, exact values vary slightly with transistor parameters.

NOTES: 1. These parameters must be measured using base terminal, VCE = 500 V, duty cycle = 2%.
2. These parameters must be measured using voltage sensing contacts separate from the current carrying contacts.
3. The combination of maximum voltage and current may be achieved only when selecting optimum junctions with a defined inductive load.

TYPICAL CHARACTERISTICS

FORWARD CURRENT TRANSFER RATIO

VS COLLECTOR CURRENT

MAXIMUM FORWARD-BIAS

MAXIMUM SAFE OPERATING AREA

TIP31
TIP31A
TIP31B
TIP31C

Texas Instruments
IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1996, Texas Instruments Incorporated