1. Consider the RC circuit shown below with a switch that moves between positions A and B.

 ![Circuit Diagram]

(a) Assume the switch has been connected to position B for a long time before it moves to position A at time $t = 0s$. For this “charging” circuit:

 i. Determine the time-constant, τ.
 ii. Using the time-constant, estimate the 10%-90% rise-time, t_r.
 iii. Write the mathematical expression for the capacitor’s voltage, v_c.
 iv. Sketch v_c versus time using values at multiples of the time-constant as a guide (use at least five points).
 v. Label the rise-time on the sketch of v_c and check that your estimate of its value appears correct.
 vi. Find the mathematical expression for the resistor’s voltage, v_R.
 vii. Find the mathematical expression for the current, i.
 viii. Sketch i versus time using values at multiples of the time-constant as a guide (use at least five points).

(b) Assume the switch has been connected to position A for a long time before it moves to position B at time $t = 0s$. For this “discharging” circuit:

 i. Write the mathematical expression for the capacitor’s voltage, v_c.
 ii. Sketch v_c versus time using values at multiples of the time-constant as a guide (use at least five points).
 iii. Find the mathematical expression for the resistor’s voltage, v_R.
 iv. Find the mathematical expression for the current, i.
 v. Sketch i versus time using values at multiples of the time-constant as a guide (use at least five points).
2. Consider the RC circuit shown below with a switch that moves from position B to A at time $t = 0$s, i.e., this is a “charging” circuit.

![Diagagram of an RC circuit with a switch moving from position B to A at time t = 0s.]

Given $v_c = 0.5V$ at time $t = 0.5ms$ and $v_c = 4.5V$ at time $t = 11.5ms$, find the following:

(a) 10%-90% rise-time, t_r, of the circuit,
(b) time-constant, τ, of the circuit,
(c) value of the unknown resistor, R,
(d) mathematical expression for the capacitor’s voltage, v_c,
(e) sketch of v_c versus time using values at multiples of the time-constant as a guide (use at least five points), and
(f) label rise-time on the sketch.

3. Consider the RC circuit shown below with a switch that moves from position A (after being there for a long time) to position B at time $t = 0$s, i.e., this is a “discharging” circuit.

![Diagagram of an RC circuit with a switch moving from position A to B at time t = 0s.]

Given the circuit’s time constant is $\tau = 2ms$ find the following:

(a) value of the capacitor, C,
(b) mathematical expression for the voltage, v_c, and
(c) sketch of v_c versus time using values at multiples of the time-constant as a guide (use at least five points).
4. Consider the RC circuit shown below with a switch that moves from position B (after being there a long time) to position A at time \(t = 0 \)s. Given that at time \(t = 330 \)µs the resistor's voltage is \(v_R = 2 \)V, determine the time constant, \(\tau \), for the circuit.

![RC Circuit Diagram 1](image1)

5. Consider the RC circuit shown below with a switch that moves from position A (after being there for a long time) to position B at time \(t = 0 \)s. Given the circuit’s time constant is \(\tau = 7.5 \)µs and at a particular time after the switch has moved the current is measured to be \(i = -240 \)µA, find the time at which the measurement was taken.

![RC Circuit Diagram 2](image2)