Motors

- Four basic types are commonly used
 - DC stepper motors
 » Expensive motors; Often employed to achieve accurate linear incremental positioning (e.g. hard drive head motors). Their motion is not continuous but in steps!!
 - Basic reversible permanent magnet DC motors
 » Normally referred as “DC motors”. These can be “cheap” (~10¢) and small and are found in many kids toys. Typically, offer high-speed (5,000 rpm) and low torque (1-5 oz.in).
 - DC gearhead motor
 » This variant of the simple DC motor includes an integrated gear-reduction mechanism and often a built-in optical position encoder or tachometer winding.
 - DC servo motors
 » High quality DC motor with built-in electronics to accomplish accurate closed-loop position (or speed) control. Typically, have “stops” built in to limit angular excursion of the motor shaft.

- Conclusion: DC gearhead motors are an excellent compromise.
“Sizing” the motors

- Need to determine motor power.

- Power = force * linear speed = torque * angular speed
“Sizing” the motors

◆ **Basic Specifications:**
 - Maximum speed = 1 m/sec. (~3ft./sec.)
 - Wheel diameter = 0.0381 m (1.5 inches)
 - Maximum mass = 4 Kg
 - Maximum grade (slope) = 10°

◆ **Requirements:**
 - **Power** = Force x Speed = m g Sin(10°) x 1m/sec = 6.8Watts
 - **Speed:** 1 m/sec ⇔ 60 / (3.14159 * 0.0381) ≅ 500 rpm
 - **Torque** = Force x distance
 = Mass x gravity x Sin(10°) x wheel radius
 = 4 x 9.81 x 0.1736 x (0.0381 ÷ 2) = 0.13 Nm (~18 oz in)

◆ **Specs. for each motor (assuming 75% efficiency):**
 - Max. Power: (6.8 ÷ 2) ÷ 0.75 = 4.5W
 - Max. Continuous Torque: (0.13 ÷ 2) ÷ 0.75 = 0.087Nm (~12oz in)
 - Speed (after gearbox): 500rpm
Encoders

- **Optical Encoders:**

- **Output Waveform (see EE231 Lab12 for more info.):**
Motor Drivers

- Need for a Driver:
 - The typical digital output can supply 10-30mA while a small DC motor can draw 500-4,000 mA!! -> Need an amplifier!!

- The H-Bridge Circuit:
H-Bridge Modes of Operation:

- **Forward (1 & 3 ON):**
 ![Forward Mode Diagram]

- **Reverse (2 & 4 ON):**
 ![Reverse Mode Diagram]

- **Braking (1 & 4 ON):**
 ![Braking Mode Diagram]
Varying the Voltage Seen by the Motor

- How could we vary the voltage to the motor?
 - Vary the supply voltage ⇒ Difficult !!
 - Turn the motor on and off “very rapidly” ⇒ Pulse Width Modulation

![Diagram showing duty cycles](image)

- Effective Voltage = Supply voltage * (time on / (time period))